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Abstract

Classifying animal behaviors in their natural environments is both challenging and ecolog-

ically important, but the use of biologgers with multiple sensors has significantly advanced

this research beyond the capabilities of traditional methods alone. Here, we show how bio-

loggers containing an integrated tri-axial accelerometer, GPS logger and immersion sensor

were used to infer behavioural states of a cryptic, freshwater turtle, the Blanding’s turtle

(Emydoidea blandingii). Biologgers were attached to three males and five females that

reside in two undisturbed coastal marshes in northeastern Georgian Bay (Ontario, Canada)

between May and July 2023. Raw acceleration values were separated into static and

dynamic acceleration and subsequently used to calculate overall dynamic body acceleration

(ODBA) and pitch. The unsupervised Hidden Markov Model (HMM) successfully differenti-

ated five behavioural states as follows: active in water, resting in water, active out of water,

resting in water, and nesting. Overall accuracy of the classification was 93.8%, and except

for nesting (79%), all other behaviours were above 92%. There were significant differences

in daily activity budgets between male and female turtles, with females spending a greater

proportion of time active out of water, and inactive out of the water, while males spent a

greater proportion of time active in water. These differences were likely a result of large sea-

sonal life-history requirements such as nesting and mate finding. Accurate classification of

behavioural states is important for researchers to understand fine-scale activities carried out

during the active season and how environmental variables may influence the behaviours of

turtles in their natural habitats.

Introduction

Observing animal behaviour in their natural habitat is increasingly important in ecological

research and behavioural ecology. Many investigators have classified different behaviours of

terrestrial animals whose movements and behaviours can be filmed and/or observed visually

in the wild [1]; however, studies on cryptic species are rarer, presumably because of logistical

difficulty in observing them frequently or continuously when they are well camouflaged, bur-

rowing in substrate, or under water. For endangered freshwater turtle species like the
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Blanding’s turtle (Emydoidea blandingii), individuals can stay submerged in wetlands for

many hours or days during the summer, except when they surface for air. Traditional methods

of collecting behavioural information in situ on freshwater turtle species are limited to coarse-

scale data such as inferring behaviour from relocation points [2], ambient temperature loggers

[3], visual observations when relocated with radio-telemetry [4] or during visual encounter

surveys [5]. These established methods either capture only short periods of behaviour (since

continuous capture would be prohibitively expensive and labour-intensive) or they possess

limitations that prevent the continuous capture of data (e.g., GPS loggers are ineffective under-

water due to the inability to receive satellite signals).

In recent years, animal-borne data-loggers with multiple integrated sensors (hereafter

called biologgers), have been used to collect biological and environmental data at biologically

relevant timescales [6]. Devices integrated with inertial measurement units (IMUs) such as

accelerometers have provided a mechanism to capture large amounts of unannotated data.

Accelerometers provide information on an individual’s body position, movement, and proxies

for energy expenditure [7], while additional sensors can provide environmental information

such as location (through GPS), temperature, pressure, or salinity [8]. Distinct behaviour or

behavioural states (broad category representing multiple distinct behaviours) can be classified

through metrics derived from the accelerometer alone, or in combination with additional sen-

sor data.

There are several existing methods to extract behaviours or behavioural states from sensor

data. Supervised computer models such as decision trees or random forest require large,

labeled training databases to derive thresholds or cutoffs for each state and such an application

requiring large training datasets of accelerometer data for free-ranging freshwater turtle spe-

cies has recently been published [9–11]. Alternatively, unsupervised methods (k-means clus-

tering, hidden Markov models) use complex algorithms to find patterns in data of biologically

relevant behaviours or make inferences from behavioural states. To our knowledge, no pub-

lished study has yet used such an unsupervised method to classify behavioural states of fresh-

water turtles.

Hidden Markov models (HMMs) are a state-switching time series model that can be imple-

mented in an unsupervised or supervised context [12]. While HMMs have been mainly imple-

mented to explore different behavioural states of GPS data, many studies have recently used

them to classify accelerometer data [13, 14]. Hidden Markov models have performed similarly

to other classification methods on many species [15]; they provide unique mechanisms to test

effects of predictor variables on state transition probabilities and capture serial autocorrelation

[12]. HMMs can incorporate different types of data as well as behavioural realism, thus allow-

ing for more inferences to be made about complex ecological relationships.

Freshwater turtles like Blanding’s turtles may spend four to six months of the year overwin-

tering, depending on local climatic conditions. After they emerge from overwintering, they

exhibit “active” behaviours that include swimming, digging/nesting, walking, foraging as well

as periods of “inactivity” such as predator avoidance, basking and resting. Given the semi-

aquatic nature of this species, their active and inactive behaviours can occur both in aquatic

and terrestrial environments. For example, swimming and foraging would be active behav-

iours in the water, while walking would be an active behaviour on land. Nesting is an activity

engaged in only by gravid females, who use their hind legs to dig nests at an angle, followed by

a short resting period. Given large differences in the pattern of body movements during peri-

ods of activity and inactivity, we wanted to determine if an unsupervised HMM could be used

to classify Blanding’s turtle behaviour into five broad behavioural states: “Active in water”,

“Active on land”, “Inactive on land”, “Inactive in water” and “Nesting”. We hypothesize that

female Blanding’s turtles allocate a greater proportion of their time to being active out of water
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compared to males, as nesting activities demand extended terrestrial movement to locate suit-

able nesting sites. To our knowledge this is the first attempt to use an unsupervised method to

classify behaviours of freshwater turtles during the active season.

Materials and methods

Study site

We conducted our study in 2023 during pre-nesting and nesting season (between May and

July) in two coastal marshes on an island in the McGregor Bay archipelago in northeastern

Georgian Bay, Ontario, Canada. The turtles’ core wetlands are a coastal marsh dominated by

cattail (Typha sp.) accompanied by various sedge species. Upland habitat was largely com-

prised of granitic rock outcrops dominated by moss and juniper (Juniperus sp.) and mixed for-

ests dominated by pine (Pinus sp.) and poplar (Populus sp) species. A more detailed

description and map of the region can be found in a parallel study [16].

Data collection

We initially captured turtles by using baited hoop-net traps or by hand during visual surveys

in wetlands with known Blanding’s turtle populations. Upon capturing an individual, we used

calipers to measure its straight carapace length (SCL), carapace height, and plastron length (to

the nearest centimeter); we also used a hanging scale to weigh it (to nearest gram) and marked

it by filing a combination of notches into marginal scutes [17]. After cleaning and lightly

scouring the rear costal scute on the turtle carapace with sandpaper and alcohol, we attached

very high frequency (VHF) radio transmitters (AI-2F, Holohil, 20g) and a multi-sensor biolog-

ger (AxyTrek, Technosmart, 10g) using a combination of epoxy glue (JB Waterweld; Permatex

5 Minute Epoxy). We weighed each individual before and after attaching the devices to ensure

the total attachment weight did not exceed 5% of its body mass. We used radio transmitters to

relocate the individual for device removal.

The AxyTrek biologgers included a tri-axial accelerometer, global positioning system (GPS)

logger, and ambient sensors that measure water pressure, proxy conductivity (analog sensor),

and temperature. The AxyManager software (TechnoSmart) was used to both configure the

biologgers for deployment and to offload data. We configured the GPS logger to take a reloca-

tion every four hours when the turtle was out of the water, and the accelerometers to operate at

a frequency of 10 Hz (10 readings per second), and 8-bit storage with a G-force range of ± 2 g.

We configured the temperature, pressure, and conductivity sensors to record at intervals of 1

Hz (once per second). To extend battery life, we configured the conductivity sensor to disable

the GPS device when the analog signal values dropped below a threshold of 500 V so that it

would not waste battery searching for satellites when the turtle was immersed in water. Prior

to releasing the turtle, we turned on the unit by passing a magnet over a magnetic switch on

the side of the device.

Quantifying movement parameters from sensor data

We pre-processed all sensor data in R-4.3.2 [18] using RStudio [19] with customized scripts.

We used a weighted average over a 91-second window to smooth out the raw acceleration val-

ues (x, y, and z) to produce separate “static” and “dynamic” data that reflected changes in the

body angle and body motion. The 91-second window was used because the dominant stroke

frequency calculated for Blanding’s turtles was 91 seconds [9, 20]. Dynamic acceleration of

each axis was calculated by subtracting the static acceleration from the total acceleration (see

Table 1). The overall dynamic body acceleration (ODBA; [20]), a common proxy of body
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motion and energy expenditure, was calculated by summing the absolute dynamic acceleration

from each axis [7]. We also calculated pitch from the acceleration data using the equation

from [15] as shown in Table 1.

We summarized movement parameters along the 10 Hz sensor time series within 30-sec-

ond windows. The 16 summary statistics for each movement parameter included the maxi-

mum (max) and mean values, interquartile range, variance, and standard deviation (SD) of the

means. Although HMMs allow for an infinite number of parameters to be included, additional

parameters increase computational complexity and time. Hence, parameters to be included

should be carefully chosen and reflect prior knowledge of the species and their behaviours

[13]. The three parameters we selected for inclusion in the HMM were immersion in water

(given that this is a semi-aquatic species), variance in pitch (to reflect changes in body angle),

and mean ODBA (to reflect body motion intensity). These were used to classify five beha-

vioural states during a portion of the active season (May to July): 1) being active in water (e.g.

diving, surfacing, swimming), 2) being active out of water (e.g. walking on land), 3) being inac-

tive in water (e.g. resting), 4) being inactive out of water (basking on rocks/logs etc) and 5)

nesting behaviours (only for females).

Unsupervised classification with HMM

We employed the "momentuHMM" R package [12] to fit the HMMs. Hidden Markov models

require a large quantity of data captured at regular intervals (in this case, sequential 30-second

intervals); however, due to battery depletion followed by reactivation upon recapture, the data

were not always collected continuously, and therefore, there were periods of time with no data.

Following the lead of [21], we associated each period of continuous data to an individual turtle

and used its ID code as a covariate in the model’s initial distribution. We transformed the raw

data for each parameter prior to reviewing probability distributions and assigning starting val-

ues for each of the three parameters selected for inclusion in the HMM. The ODBA and vari-

ance in pitch were log-transformed to reduce skewness in the data [22], while the raw analog

sensor values for the immersion in water parameter were converted into a binary variable (1

if< 500 V; 0 if> 500 V; see Table 2). Both the ODBA parameter and the variance in pitch

were modeled with a normal probability distribution while immersion in water was modelled

with a Bernoulli distribution due to its binary nature.

We constrained the transition probability matrix (TPM) to prevent certain transitions

between states that were not ecologically meaningful. For example, we ensured transitions did

not occur between the “inactive in water” state and “nesting” state since females need to travel

in the water (active in water) and then on land (active out of water) before they can exhibit

nesting behaviour. Similarly, we prevented the “nesting” state from being followed

Table 1. Movement parameters calculated from the raw acceleration data.

Metric Label Equation Description

Static Acceleration Sx, Sy, Sz
P

X

n ;

P
Y

n ;

P
Z

n
Average acceleration in each axis, calculated over a 91s moving window [9].

Dynamic Acceleration Dx, Dy, Dz Sx � X; Sy � Y; Sz � Z Residual acceleration in each axis.

Overall Dynamic Body Acceleration ODBA (|Dx| + |Dy| + |Dz|) A proxy for movement and energy expenditure [7].

Pitch Pitch
tan� 1 Sxffiffiffiffiffiffiffiffi

S2
yþS2

z

p

� �

∗ 180

p

Vertical orientation of the body angle [15].

Subsequent summary statistics were calculated over a 30-second fixed window (max, mean, interquartile range, and variance) for the hidden Markov model

classification.

https://doi.org/10.1371/journal.pone.0314291.t001
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immediately by the “active in water” state, the “inactive in water” state from being immediately

followed by the “active out of water” state, and the “inactive in water” state from being followed

immediately by the “inactive out of water” state. Additionally, the “nesting” state could not

immediately follow “active in water” state, the “active out of water” state could not immedi-

ately follow “resting in water” state, and “inactive out of water” could not immediately follow

the “active in water” state. Finally, we added a covariate in the TPM and the initial distribution

labeled “gravid,” reflecting the reproductive status of the turtle (either gravid or not-gravid,

including males). This covariate allowed us to restrict the possibility of non-gravid female and

male turtles from transitioning to or from the nesting state. This functionally means we fitted a

5-state HMM on gravid female turtles and a 4-state HMM on all other reproductive classes.

The most likely behavioural states were determined with the Viterbi algorithm [12].

Validation of the HMM

To validate the HMM results, we used either a smartphone camera (Google Pixel 5) or a DSLR

camera (Canon 70D, 15–600 mm Sigma lens) to record contemporaneous videos of turtles

wearing the biologgers in the field. The distance and timing for each recording varied depend-

ing on the ease of recording and type of behaviour expressed. For example, nesting behaviours

were often captured at a distance of>15 m using a DSLR camera with a 150–600 mm tele-

photo lens, while active in water recordings were captured at a shorter distance with a smart-

phone. After viewing each video in the lab, we determined the dominant behavioural state of

the individual during each 30-second segment and annotated the video using BORIS (V.

8.20.4; event logging software [23]). We omitted all instances when turtles appeared disturbed

by the presence of the researcher. We only had a limited number of video recordings because

it was difficult to make these recordings without disturbing the turtles. Therefore, for each

individual we additionally randomly selected fifty 30-second segments and used the corre-

sponding patterns of sensor data to classify behavioural states. This “expert-driven” method

was used successfully by previous studies [13] to estimate the “true” behavioural states from

sensor data without independently observed behaviour from video cameras or other methods.

We have confidence in the expert-driven classification method because in this study, we

focused on broad behaviours that can be directly observed and that had very distinctive signal

patterns (Fig 1). We constructed a confusion matrix relating the HMM-inferred states to the

annotated behavioural states using the caret package in R [24]. The model accuracy was deter-

mined by calculating the percentage of observations in which HMM-inferred states matched

the true annotated states.

Table 2. Starting values for the behavioural states (state-dependent probability distribution of movement parameters) used in the unsupervised hidden Markov

model to classify behaviour of Blanding’s turtles (Emydoidea blandingii).

Variable Distribution Statistic Behavioural States

Active in water Active out of water Inactive In Water Inactive out of water Nesting

VarPitch Normal Mean -0.5 -0.5 -6 -6 0.2

SD 3 2 3 2 1

ODBA Normal Mean -1 -0.5 -2 -2 -0.5

SD 0.8 1 0.5 0.5 0.2

Immersion in water Bernoulli Prob 1 − (1 × 10−12) 1 × 10−12 1 − (1 × 10−12) 1 × 10−12 1 × 10−12

Variance in pitch (VarPitch) and mean overall dynamic body acceleration (ODBA) were averaged over a 30-second window and then log10 transformed to reduce

skewness. Starting values for Immersion in water were adapted by those of diving birds[15]. Prob = Probability. SD = Standard Deviation.

https://doi.org/10.1371/journal.pone.0314291.t002
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Activity budgets

We delineated durations of continuous HMM-inferred behavioural states and determined the

average of time allocated to each behavioural state by the eight turtles in the study. We also cal-

culated the daily activity budgets (proportion of time spent in each state daily) for each sex to

assess differences between sexes in movement behaviours. To assess differences in daily pro-

portions, we fitted a mixed-effects beta regression model using the glmmTMB package in R

[25]. In this model, the response variable was the proportion of time spent in each state, with

sex and state included as fixed effects, and a random intercept for each individual to account

for repeated daily measures. To evaluate differences in average bout duration for each state

between sexes, we first assessed the data for departure from normality with the Shapiro-Wilks

Fig 1. Two-minute snapshot of raw data for the five behavioural states of interest. (A) Photo of animals in each state; (B) Discrimination of in

water vs out of water according to raw analog sensor data (In water threshold< = 500 V); (C) Raw surge values representing movement along

the longitudinal axis (g); (D) Raw heave axis representing movement along the vertical axis (g); (E) Raw sway values representing movement

along the lateral horizontal axis (g).

https://doi.org/10.1371/journal.pone.0314291.g001
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test. Depending on the results, we then used either a Wilcoxon rank sum test (non-parametric)

or a Student’s T test (parametric) to determine significant differences between sexes. For com-

parisons between sexes, we combined both non-gravid and gravid females because of the lim-

ited number of non-gravid females.

Ethics statement

Animal use and data collection was authorized by McMaster University Animal Use Protocol

(22-07-27), and an Ontario Ministry of Natural Resources and Forestry Wildlife Scientific Col-

lector’s Authorization (#1097649).

Results

The eight biologgers recorded a total of 27,058,440 s (7516 h) of tri-axial accelerometer and

immersion data for individuals across both sexes (5F, 3M). The dataset resulted in 270,584,400

accelerometer data points summarized into 901,948 30-second windows for each parameter of

the HMM input. Each device recorded on average 3,382,305 ± 2,017,098 s (939 ± 560 h) of

data (Table 3). Data for turtles MCG_005 and MCG_013 were only recorded for a brief period

because the devices malfunctioned and unexpectedly shut off shortly after deployment and

could not be reactivated. Another device on turtle MCG_016 recorded continuously for

691,200 s (8 days) before it shut off but was reactivated with a magnet during a subsequent

recapture lasting an additional 20 days. The remaining five devices recorded data continuously

during the entire study period without being turned off, with the longest continuous recording

of 5,370,900 s (62.2 days) by turtle MCG_001 and the shortest of 2,075,070 s (24 days) by turtle

MCG_003.

Throughout the study period, turtles were relocated and recorded within various habitats,

including cattail marshes, the coastal zone, sedge marshes, and rock outcrops. Turtles were

observed often basking in the coastal zone and marsh habitats either on the rock coastline or

beaver (Castor canadensis)/muskrat (Ondatra zibethicus) lodges. Turtles were observed suc-

cessfully foraging for small fish within the coastal zone. Three female Blanding’s turtles, identi-

fied as gravid during early June, made multiple nesting attempts between June 20th and June

24th. These turtles left their core wetland and either accessed a rock outcrop within 150 m of

their wetland (straight-line distances from wetland’s edge to suspected nesting site; 76 m for

MCG_003 and 113 m for MCG_017) or, in one instance one individual (MCG_016) travelled

both terrestrially and swam to a separate island approximately 400 m away from their core

wetland.

Table 3. Description of the eight Blanding’s turtles (Emydoidea blandingii) used in this study, conducted in McGregor Bay, Ontario, Canada.

TagID Sex Deployment Duration (s [h]) Deployment Start Date Deployment End Date Gravid

MCG_001 Female 5.3709e6 [1,493] 2023-05-09 2023-07-10 No

MCG_002 Male 5.148e6 [1,430] 2023-05-09 2023-07-08 N/A

MCG_003 Female 2.074e6 [576] 2023-05-31 2023-06-24 Yes

MCG_005 Female 9e5 [250] 2023-05-09 2023-05-19 No

MCG_006 Male 4.788e6 [1,330] 2023-05-17 2023-07-11 N/A

MCG_013 Male 6.876e5 [191] 2023-05-09 2023-05-17 N/A

MCG_016 Female 2.722e6 [756a] 2023-05-09 2023-06-24 Yes

MCG_017 Female 5.3496e6 [1,486] 2023-05-09 2023-07-10 Yes

Deployment duration was rounded to the nearest hour. N/A = Not applicable.
a Unit was off for a 14-day period between 2023-05-17 and 2023-05-31

https://doi.org/10.1371/journal.pone.0314291.t003
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Accuracy assessment of HMM

Based on the three movement parameters (ODBA, Immersion in water, and VarPitch), the

HMM classified sensor data (Fig 2) into five behavioural states with an overall accuracy of

93.8% (Table 4). Accuracies associated with being active or inactive out of water were 100%,

while being active or inactive in water were slightly lower (97.5% and 92.2%, respectively); by

contrast, nesting behaviours had the lowest accuracy of only 79% (Table 4).

Comparison of activity budgets

Throughout the entire sampling period, turtles spent more time in water than out of water,

with individuals spending slightly more time being inactive in the water than being active in

Fig 2. Example of classifed behavioural states inferred from unspervised 5-state hidden Markov model for turtle MCG_017 from 2023-05-15 11:00:00 to

2023-05-16 00:00:00). (A) Log10 variance in pitch (VarPitch) (B) Log10 overall dynamic body acceleration (ODBA) (C) Imersion status (threshold value of 500

V used to differentiate between “immersion in water”). Color corresponds to behavioural state (grey = inactive in water; red = active in water; blue = active out

of water; green = inactive out of water).

https://doi.org/10.1371/journal.pone.0314291.g002

Table 4. Confusion matrix to assess accuracy of the inferred behavioural states classified by the hidden Markov model (HMM) compared with the manually classi-

fied behavioural states.

HMM Inferred

Active in water Active out of water Inactive in water In active out of water Nesting

Manually Classified Active in water 97.5% 0.0% 7.8% 0.0% 0.0%

Active out of water 0.0% 100% 0.0% 0.0% 21.0%

Inactive in water 2.5% 0.0% 92.2% 0.0% 0.0%

Inactive out of water 0.0% 0.0% 0.0% 100% 0.0%

Nesting 0.0% 0.0% 0.0% 0.0% 79.0%

https://doi.org/10.1371/journal.pone.0314291.t004
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the water (46 ± 5% vs 41 ± 5%; Fig 3). On average, males spent significantly more time each

day in water than did females (proportion of 0.53 ± 0.17 vs 0.46 ± 0.17, respectively) (p< 0.05;

Table 5), while females spent a significantly higher proportion of time each day being active

out of water than did males (0.02 ± 0.03 vs 0.01 ± 0.02, respectively) (p< 0.01; Table 5). There

was an additional significant difference between sexes for proportion of time spent inactive

out of water (0.06 ± 0.13 vs 0.09 ± 0.13 for males and females, respectively) (p< 0.01), but not

for time spent inactive in the water (0.39 ± 0.15 vs 0.40 ± 0.15 for males and females respec-

tively) (p> 0.05; Table 5).

Fig 3. Total activity budgets (proportion of time in each state across whole deployment duration; see Table 3) for each individual Blanding’s turtle

constructed from hidden Markov model-inferred states.

https://doi.org/10.1371/journal.pone.0314291.g003

Table 5. Activity budgets of males and females residing on islands in McGregor Bay Ontario.

Males Females Sex Comparison

Behavioural State Prop Duration (s [min]) Prop Duration (s [min]) Prop (P value) Duration (P value)

Active in water 0.53 ± 0.17 1121.8 ± 4100.6 [20.4 ± 68.3] 0.46 ± 0.17 958 ± 2703.4 [16.0 ± 45.1] <0.05 <0.05

Inactive in water 0.39 ± 0.15 961.5 ± 1850.8 [16.0 ± 30.8] 0.40 ± 0.15 929 ± 1922.6 [15.5 ± 32] 0.49 0.88a

Active out of water 0.01 ± 0.02 217.7 ± 323.4 [3.6 ± 5.4] 0.2 ± 0.3 188.6 ± 310.2 [3.1 ± 5.2] <0.01 0.28

Inactive out of water 0.06 ± 0.13 1811.4 ± 4035.7 [30.2 ± 67.3] 0.09 ± 0.13 1386.3 ± 2511.7 [23.1 ± 41.9] <0.01 0.17

Nesting - - 0.05 ± 0.01 1039.3 ± 2058.1 [17.3 ± 34.3] - -

Mean daily proportion of time individuals spent in each behavioural state (prop) and mean bout duration inferred from the hidden Markov model. P values of <0.05

indicate significant differences between sexes according to statistical tests performed. If the bout duration data deviated from assumptions of parametric tests, we used a

Wilcoxon rank sum test; otherwise, we used a t-test to compare between sexes.
a non-normal distribution

https://doi.org/10.1371/journal.pone.0314291.t005
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On average, active bouts on land (i.e. out of the water) were shortest, lasting only 195 ± 314

s (3 ± 5 min), while nesting bouts averaged 1039 ± 2058 s (17 ± 34 min; maximum duration

was 286 minutes). Inactive periods on land, however, were the longest, averaging 1502 ± 3008

s (25 ± 50 min), with one individual having an inactive period lasting up to 58,560 s (16.3 h).

Active and inactive periods in water had similar durations of 1054 ± 3286 s (17 ± 55 min) and

941 ± 1896 s (16 ± 32 min), respectively. Overall, only the duration of active bouts in water

were significantly different between sexes, where males performed on average longer bouts of

activity in the water than did females (1121.8 ± 4100.6 s, 958 ± 2703.4 s respectively) (Student’s

t test; p< 0.05; Table 5).

Discussion

We successfully discerned five dominant behavioural states of a semi-aquatic freshwater turtle

using data from a multi-sensor biologger and an unsupervised HMM. By adding a biological

variable to indicate gravid or non-gravid status, we eliminated the possibility that activities

associated with males or non-gravid females could be classified as “nesting” behaviours.

Despite the high overall accuracy of 93.8%, accuracy for the nesting behavioural state was only

79%. We attribute this lower accuracy to our choice of 30-second window, which is too short

to capture the entire behavioural state, which includes rhythmic movements of the gravid

female while they use their hind legs to dig at an angle, followed by a brief resting period (Fig

1). Previous research [13] has discussed how the use of an inappropriate time window to sum-

marize data could lead to misclassifications. We were able to visually distinguish accelerometer

data associated with nesting behaviour from those of other behaviours when we used a longer

time window; however, increasing the time window would have reduced classification accu-

racy for all other states because “activity” would have overshadowed short bouts of “inactivity”.

Although use of sliding windows [26] may help solve this problem, it may lead to other prob-

lems related to handling much larger datasets and unreasonably long processing times and is

therefore not a practical solution.

Although all nesting attempts observed in the field were correctly classified as nesting, some

overland movements with similar variance in pitch and ODBA were incorrectly classified as

nesting (Table 4). A posterior correction could be applied to the classified data to further

reduce errors by incorporating spatial information to mask out areas that do not have typical

nesting habitat. Another option is to use additional covariates in the model to restrict transi-

tioning to nesting behavioural state outside of the nesting season and where there are unsuit-

able habitat types. We did not apply these posteriori corrections to our data since our primary

goal was to test the capability of the HMM for classifying behavioural states for the Blanding’s

turtle.

While we were able to distinguish between the dominant behavioural states, limitations in

our data collection and classification method prevented us from distinguishing between more

nuanced behaviours (e.g. surfacing and foraging events). First, the pressure sensor was an

unreliable method of distinguishing surfacing events in most cases, as the turtles spent a large

portion of their time in shallow areas or near the surface of the water, where the sensor’s sensi-

tivity was insufficient. A previous study on European pond turtles (Emys orbicularis) used a

supervised classification method to successfully capture some surfacing events overnight,

when other movement is minimal [10]. Applying a similar supervised method to our data

could also potentially capture nocturnal surfacing events or instances when the turtles are in

deeper water. Secondly, although foraging behaviours are ecologically important, they show

limited notable/consistent differences in body kinematics compared to other behaviours like

being active or inactive, which limited our ability to distinguish them. Blanding’s turtles’ diet
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has been found to consist largely of animal matter [27] and reported observations describe

them as ingesting prey when individuals probe their head into vegetation, scavenging, and

some active predation [27, 28]. With the diverse diet and inconsistent predation behaviours

classifying foraging behaviour would likely require a supervised training approach and a large

amount of training data.

Behavioural partitioning between sexes

We quantified differences in average daily activity budgets between males and females. On

average, females spent a significantly larger proportion of their daily activity on land (out of

water) and this may be attributed to their well-documented overland migrations to nest [29,

30]. In many studies, gravid females will travel long distances to find suitable nest sites to max-

imize the chance of hatchling survival [31]. In the Georgian Bay landscape with rock outcrops,

substrate depth is often limited [32] and turtles may have to test multiple locations before they

successfully nest. The larger proportion of time spent on overland travel to access nesting habi-

tat and then selecting nest sites may explain why females spend a significantly larger propor-

tion of their time being active out of water compared to males.

Females also spent a significantly smaller proportion of time being active in water and this

may reflect the greater proportion of time that males must spend to find mates. While females

continue to travel for nesting purposes, increasing their vulnerability to predation, males

spend most of their time during the pre-nesting season searching for and mating with females,

as well as foraging, activities that primarily take place in the water, therefore, reducing the

amount of time on land [33]. Another reason why the males may be spending more time in

water may be related to our study site being in an undisturbed archipelago, with most of the

turtles inhabiting two coastal marshes that are in close proximity (~ 200 m apart but on the

same island). A parallel study [16], confirmed that this population used habitat types according

to their availability and did not exhibit positive or negative selection for any habitat class at the

third-order scale. Since the core wetlands are large and in close proximity, males probably do

not need to travel far to access mates and resources.

We found evidence of differences in the proportion of daily inactivity between males and

females only when they were out of the water. Being ectotherms, turtles must spend long peri-

ods in the early spring being out of or at the water surface to bask to increase their body tem-

peratures [3]. Gravid females have been reported to spend a greater percentage of time basking

[3] likely due to requirements for egg development [34] and likely what is contributing to the

difference in this case. As the weather warms up when females conduct overland nesting

migrations, they must still periodically use aquatic habitats such as wetlands or vernal pools to

hide from predators, to rehydrate, and to replenish energy reserves [4, 35]. Therefore, on aver-

age, the proportion of time each day spent being inactive in the water would not differ signifi-

cantly between males and females.

While these behaviours may be explained by large seasonal life-history requirements such

as nesting and mate finding, other environmental characteristics may affect behaviour pat-

terns. An animal’s behaviour and activity patterns reflect the spatial and temporal processes

that influence its ability to acquire resources. For example, spatial processes such as habitat

structure and heterogeneity, variation in moisture, as well as temporal processes such as daily

and seasonal fluctuations in photoperiod, ambient temperature and precipitation can all affect

the distribution of resources and the ability of individuals to exploit the resource [36]. Such

daily and seasonal variations in environmental conditions should influence how animals make

short-term decisions on how to select suitable habitats or when to forage for food or seek shel-

ter, while minimizing exposure to predation [37]. Integrating variables into the models that
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correspond to these temporal and spatial processes will help further elucidate the more fine-

scale drivers of behaviour.

Understanding how Blanding’s turtles partition their behaviours in a natural, undisturbed

habitat can provide insights into how disturbances may impact populations. For instance, the

difference in activity outside the water, combined with the time females require for nesting

and the time males spend in the water, highlights the potential for increased mortality risk for

female turtles compared to males within this population. While road mortality and urban sub-

sidized predators are not threats in this undisturbed location, future research should explore

whether this pattern persists in disturbed areas, as it could help explain the male-biased sex

ratios observed in other turtle populations [33].

Conclusions

We have demonstrated the efficacy of an unsupervised HMM framework for classifying beha-

vioural states in Blanding’s turtles using high-frequency multi-sensor data. Nevertheless, this

approach was unable to accurately model more than five behaviours, and the behavioural states

decoded by the model were not always aligned with biologically interpretable behaviours.

Therefore, more nuanced behaviours such as foraging or surfacing events may need to be

approached with a supervised classification method using the HMM-inferred states. The meth-

ods outlined in this study were only applied to a single population of Blanding’s turtles in

McGregor Bay. Even so, the framework we employed could be modified for other species in

other environmental contexts, provided the targeted behaviours exhibit notable differences in

body kinematics. Furthermore, this framework offers a basis for investigating the drivers of

behaviours and how they might be manifested temporally and spatially across various habitats

and environmental conditions for the Blanding’s turtle. By improving our understanding of

these behaviours and their temporal and spatial manifestations, we can inform more effective

conservation strategies aimed at the specific needs of Blanding’s turtles and other similar

species.
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