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areal cover of the DTZ was significantly and posi-
tively correlated with wetland VI. Without exception, 
the amount of meadow marsh in wetlands was signifi-
cantly reduced in Period 2.
Conclusions  Wetlands with higher VI scores and 
anthropogenic impact were associated with greater 
changes in wetland zonation and conversion into DTZ 
following extremes in water levels. This study pro-
vides important insights into how coastal marshes in 
EGB are responding to extreme water-level fluctua-
tions induced by climate change.
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Introduction

The five Laurentian Great Lakes of North America 
(Lake Superior, Lake Michigan, Lake Huron, Lake 
Erie, and Lake Ontario) are among the top 20 largest 
lakes in the world by volume and area (Herdendorf 
1982). Along the extensive shoreline of these large 
lakes are thousands of coastal wetland complexes 
(Cvetkovic and Chow-Fraser 2011), formed at river 
mouths, in deltas and in open and protected embay-
ments, and behind sand and rock barriers (Albert 
et  al. 2005). These wetlands are economically and 
ecologically important ecosystems that purify water, 
reduce flooding risks, and provide habitats for diverse 
communities of plants, reptiles, and fish. Georgian 

Abstract 
Context  Global climate change has resulted in 
extreme water-level (WL) fluctuations in Eastern 
Georgian Bay (EGB) and has affected its high-qual-
ity wetlands. Beginning in 1999, EGB experienced 
14  years of extremely low water levels (Period 1), 
followed by 6 years of rapidly increasing water levels 
starting from 2014 (Period 2). During Period 1, trees 
and shrubs invaded the high marsh, but with inun-
dation, they died out and transitioned into the novel 
Dead Tree (DT) Zone (DTZ) during Period 2.
Objectives  We related long-term changes in wet-
lands vegetation zonation to different levels of anthro-
pogenic impacts and the Vulnerability Index (VI) 
scores and wetland sensitivity to WL extremes.
Methods  We used images acquired in 2002–2003 
(IKONOS) and 2019 (KOMPSAT-3 and Pleiades-
1A/1B) for four areas (19 wetlands) in EGB with 
varying anthropogenic impact. We used object-based 
classification to map land cover in two periods, fol-
lowed by change detection. We related the percent 
areal cover of DT in wetlands to corresponding VI 
scores.
Results  We obtained > 85% overall and > 70% DT 
mapping accuracies. Wetlands with the least anthro-
pogenic impact had the smallest DTZ. Percentage 
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Bay, the northeastern arm of Lake Huron, covers an 
area of over 15,111 km2 and contains over 30,000 
islands (Sly and Munawar 1988). With a unique geo-
morphological setting and a complex shoreline, Geor-
gian Bay provides a home to several thousand wetland 
units (Midwood et al. 2012; Weller and Chow-Fraser 
2019a).

Unlike the degraded coastal marshes of Lakes 
Erie and Ontario, those in Eastern Georgian Bay 
(EGB) have been minimally affected by anthropo-
genic activities (DeCatanzaro et  al. 2009; Cvetkovic 
and Chow-Fraser 2011); however, water-level fluc-
tuations associated with global climate change and 
human activities are threatening their ecological 
integrity (Weller and Chow-Fraser 2019b; Montoc-
chio and Chow-Fraser 2021). Lakes Michigan and 
Huron are hydrologically connected and display syn-
chronous long-term water-level fluctuations that fol-
low ~ 8 and ~ 12 y fluctuation cycles. (Hanrahan et al. 
2009). These patterns of water-level fluctuations are 
essential for maintaining plant biodiversity because 
higher water levels tend to lead to a higher proportion 
of open water and the establishment of Submersed 
Aquatic Vegetation (SAV) communities, while lower 
water levels tend to lead to a lower proportion of 
open water and establishment of meadow marsh and 
emergent vegetation (Keddy and Reznicek 1986; 
Wilcox and Nichols 2008). Beginning in 1999, how-
ever, water levels dropped to extremely low levels and 
remained low for 14 years (Period 1). Uncharacteristi-
cally, this was followed by an abrupt increase in 2014 
that has since continued to climb to record high lev-
els in 2020 (Period 2) (Montocchio and Chow-Fraser 
2021).

When water levels dropped to extremely low levels 
during Period 1, previously inundated areas (where 
SAV and emergent vegetation had been established) 
became exposed and began to support meadow veg-
etation and even non-wetland species such as pine 
trees. When water levels abruptly increased dur-
ing Period 2, these meadow and terrestrial species 
became flooded and began to die, forming a novel 
zone of shrubs and dead trees (DT) along the shore-
line. The persistence of this dead tree zone (DTZ) 
considerably altered the structure and function of 
these coastal marshes. A survey of fish communi-
ties from 2003 to 2019 showed that there had been 
a change in the fish communities between the two 
periods of contrasting water levels (Montocchio and 

Chow-Fraser 2021). In another study, coastal marshes 
in Georgian Bay that had once supported young-of-
the-year muskellunge was no longer suitable as nurs-
ery habitat because of a structural change in the SAV 
community (Leblanc et al. 2014; Leblanc and Chow-
Fraser 2017). Further research showed that habitat 
suitability was related to hydrogeomorphic charac-
teristics of wetlands (slopes, wave exposures, areal 
extents, and volumes of wetland habitats) that indi-
cated their vulnerability to water-level disturbances; 
plant communities assessed as being least suitable 
were found in wetlands with the highest Vulnerability 
Index (VI) scores (i.e. least resilience to water-level 
disturbance; Weller and Chow-Fraser 2019b). These 
results confirm the study by Cvetkovic et  al. (2010) 
that showed the dependence of the fish community 
on structure and function of the plant community in 
Great Lakes coastal marshes.

Remote sensing provides one of the best ways to 
examine temporal changes in plant structure over 
a large geographic area (Baker et  al. 2007; Munyati 
2000, 2004). Remote sensing-based change detection 
uses multitemporal images (images collected in two 
or more periods) to quantify changes in an area of 
interest based on changes in the reflectance signature 
of the land cover (Deng et  al. 2008). This could be 
achieved through direct image reflectance comparison 
using image subtraction, image ratio, remote sensing-
based indices, or image classification approaches 
(Shaoqing and Lu 2008). In addition, remote sensing 
methods are also being used to assess many wetlands-
related features such as instantaneous water extent, 
temporal estimates of hydroperiod, soil moisture, 
water chemistry, and many others (Brisco et al. 2017; 
Millard and Richardson 2018; Chasmer et al. 2020). 
Furthermore, investigators have combined this infor-
mation with topographical data to develop metrics 
of wetland zonation, hydrology, and connectivity 
(Crasto et al. 2015; Ameli and Creed 2017; Chasmer 
et al. 2020).

In the current study, we quantify changes in dis-
tribution of wetland habitat classes in four coastal 
regions of Eastern Georgian Bay (EGB) with dif-
ferent levels of anthropogenic disturbance. We use 
remote sensing techniques and satellite images 
acquired in 2002–2003 and in 2019 to map the distri-
bution of wetland habitat classes between extremely 
low (Period 1) and extremely high (Period 2) water 
periods, respectively. Since the DTZ is a novel habitat 
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class, we hypothesize that the areal extent of the DTZ 
would be positively related to the region’s VI scores 
(which would be high if ecosystem resilience were 
low). Further, we predict that the degree of change 
in wetland habitats would vary with the degree of 
human disturbance in the region. This study provides 
hitherto unreported and important insights into how 
vegetation in coastal marshes in EGB will respond 
to extremes in pattern of water-level fluctuations 
induced by climate change.

Methods

Study sites

The four regions in this study are located along 
the shoreline of EGB, the eastern arm of Lake 
Huron which is separated from the main lake by 
the Bruce Peninsula and Manitoulin Island (Fig. 1). 
EGB has over 30,000 small islands that form the 
largest freshwater archipelago (Rokitnicki-Wojcik 

et  al. 2011). This archipelago is both geologically 
unique, underlain by the Precambrian Shield, and 
biologically diverse, containing thousands of small 
pristine coastal marshes, where the anthropogenic 
impact has thus far been limited to recreational 
and residential development (Midwood et al. 2012; 
Weller and Chow-Fraser 2019a). The southern-
most region is Severn Sound which includes the 
town of Honey Harbour, where there is heavy rec-
reational development and has the highest anthro-
pogenic impact among the selected regions. The 
ten sites in Severn Sound are North Bay, Ojibway 
Bay, Treasure Bay, Roberts Island, Vennings Bay, 
Quarry Island, Potato Island, Potato Island (PI) 
Marsh, Oak Bay, and Green Island. North of Sev-
ern Sound is the Tadenac Bay region, which expe-
riences the least anthropogenic impact; this region 
has been managed for over a century as a protected 
area for fish and wildlife communities and the sites 
include Miners Creek, Black Rock, Tadenac, and 
David’s Bay. The two other regions located fur-
ther north are Franklin Island and Pointe au Baril, 

Fig. 1   Study Sites in the four regions
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both of which experience intermediate human 
impact related to cottage development. We selected 
three wetlands in the Franklin Island region which 
include Franklin Island, Corbman Bay, Cormican 
Bay, and West Bay, and two wetlands in the Pointe 
au Baril region, which includes Hole in the wall, 
and Inukshuk Bay.

Ground reference data

We used ground truth data from several different 
sources for this study. Firstly, we conducted field-
work in the summer of 2021 to collect ground refer-
ence data. We recorded geographic coordinates and 
took photographs of different land cover classes to be 
used in the image classification and accuracy assess-
ment. Secondly, we used field data collected in EGB 
between 2003 and 2008 inclusive for various research 
projects (Chow-Fraser, unpub. data, McMaster Uni-
versity). We also used high-resolution Unmanned 
Aerial Vehicle (UAV; 4-cm resolution) images col-
lected from 2013 to 2019 for individual wetlands 
(Chow-Fraser, unpub. images, McMaster University). 
Lastly, we used aerial photographs (20-cm resolution) 
collected by the Central Ontario Orthophotography 
Project (COOP) and South Central Orthophotogra-
phy Project (SCOOP) in 2016 and 2018 respectively. 
We visually assessed the UAV and aerial imagery to 
extract ground reference points for all the land-cover 
classes considered in the image classification. We 
also used many ground reference points per region 
collected as a combination of all sources (further 
explained under Sect. ‘Image classification and accu-
racy assessment’). In addition, we used wetlands 
manually delineated by Midwood et  al. (2012) as a 
guide to determine the water level and distribution of 
wetlands in Period 1.

Image Data

High-resolution IKONOS images and high-accuracy 
wetland inventory products were already available for 
Period 1 (Midwood et al. 2012). The IKONOS satel-
lite images (3.2 m multispectral and 0.82 m panchro-
matic) were provided by Georgian Bay Forever (for-
merly Georgian Bay Foundation) and was operated by 
MAXAR Technologies Inc. launched in September 
1999 and was decommissioned in March 2015 (Sat-
ellite Imaging Corporation 2022a). IKONOS images 
that cover the study area were collected in 2002 and 
2003 (Table 1). We used Red, Green, blue, and Near 
InfraRed (NIR) bands in our image classification. 
These images had been pre-processed and pan-sharp-
ened to 1 m resolution by the image provider (Mid-
wood and Chow-Fraser 2010).

Given that the IKONOS satellite was retired in 
2015, and there was insufficient time for wetlands 
to exhibit detectable changes in vegetation zonation 
by 2015, we had to use other sensors, recognizing 
that this would limit our ability to use index-based 
change-detection techniques. We were able to use 
high-resolution images from a single sensor for three 
regions (Pleiades1A/1B; 2 m multispectral and 50 cm 
Panchromatic 0.5  m pansharpened resolution), and 
the KOMPSAT-3 (2.8 m multispectral and 0.7 m pan-
sharpened resolution) for the remaining (Table  1). 
Pleiades is composed of two satellites, Pleiades-1A 
(2 m multispectral and 0.5 m panchromatic) and Plei-
ades 1B (2 m multispectral and 0.5 m panchromatic) 
and were launched in December 2011 and 2012 
respectively. These are owned by AIRBUS Defence 
and Space and are still functioning (Satellite Imaging 
Corporation 2022b, 2022c). KOMPSAT-3 is owned 
by the Korean Aerospace Research Institute (KARI) 
and was launched in May 2012 and was decom-
missioned in May 2022 (eoPortal 2022; Satellite 

Table 1   Satellite image 
information

Site Period 1 Period 2

Satellite Image acquisition Date Satellite Image acquisition Date

Tadenac Bay IKONOS 07-03-2002 Pleiades-1B
Pleiades-1B

06-21-2019
06-27-2019

Franklin Island IKONOS 06-25-2003 KOMPSAT 3 07-07-2019
Pointe au Baril IKONOS 06-25-2003 Pleiades-1B 07-14-2019
Severn Sound IKONOS 07-03-2002 Pleiades-1A

Pleiades-1B
06-21-2019
06-27-2019
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Imaging Corporation 2022d). Both KOMPSAT-3 
and Pleiades-1A/1B Images consist of Blue, Green, 
Red, and NIR bands. We performed radiometric and 
atmospheric correction (ENVI QUAC correction) 
to these images and pansharpened using the Nearest 
Neighbour Diffused Pansharpening (KOMPSAT-3 to 
2.8 m and Pleiades-1A/1B to 0.5 m) with ENVI 5.5 
(L3Harris Geospatial 2020) prior to image classifi-
cation. Since there was a displacement between the 
images collected for Periods 1 and 2, we used image-
to-image georegistration in ArcGIS Pro to produce 
an exact overlap between corresponding IKONOS 
and KOMPSAT-3 or IKONOS and Pleaides-1A/1B 
images. Pleiades and KOMPSAT had very similar 
spatial resolutions and spectral bands (blue, green, 
red, and NIR). We further performed geometric cor-
rections for UAV, SCOOP, and COOP images which 
were sources of ground reference data.

Image classification and accuracy assessment

For all study sites, we created separate independent 
sets of classification and validation points using mul-
tiple sources (explained under Section ’Ground refer-
ence data’) for the images collected in Periods 1 and 
2. For image classification, we included 6 land cover 
classes in both time Periods: i) emergent, meadows 
or shrubs (EMS), ii) floating vegetation (FV), iii) 
open water (OW), iv) rocks and barren land (RBL), 
v) submersed aquatic vegetation (SAV), and vi) trees 
(T). For Period 2, however, we added vii) the dead 
tree zone (DTZ) as an additional land cover class. 
Initially, we tried to map emergent, meadow and 
shrubs as three separate classes, respectively, but due 
to high confusion among these individual classes, we 
combined them into a single one (i.e. EMS). Simi-
larly, we considered rocks and barren land as sepa-
rate classes initially but then combined them into a 
single one (RBL). We used approximately 30% of the 
total reference points for the accuracy assessment and 
we selected these points manually to ensure that the 
points are uniformly distributed. The total number of 
reference points varied for the four sites due to differ-
ences in available ground reference data for each area, 
distribution of each class across the landscape, and 
the areal cover of the image (Table 2). We used a min-
imum of 5 locations for both classification and accu-
racy assessment for each class and each study site. 
For both periods and all study sites, we conducted 

object-based image classification with the random 
forest classifier followed by the accuracy assessment 
using Quantum GIS (QGIS) 3.16.16 (Semi-automatic 
Classification (SCP), dzetsaka: Classification Tool, 
and Orfeo Toolbox (OTB) 8.1.0 plugins).

Data analysis

After image classification, we used both QGIS and 
ArcGIS Pro for further data analysis. First, we used 
the COOP 2016 and SCOOP 2013 Digital Eleva-
tion Models (DEM) (Ontario Ministry of Natural 
Resources 2015, 2017) to extract the water level cor-
responding to dates of acquired images (Government 
of Canada 2019). Then we visually inspected the sat-
ellite images used for the image classification along 
with UAV images (depending on the availability) 
to manually edit the water level extracted from the 
DEM. We created a 10-m buffer around the shore-
line of each wetland and used it to clip the classified 
images acquired for the two periods. For Period 1, we 
used the McMaster Wetlands Inventory by Midwood 
et al. (2012) to determine the shoreline. We then con-
verted the clipped wetland classification layers to ras-
ter (resolution of the corresponding Period 2 image 
for both periods) and used the SCP plugin in QGIS to 
conduct the change detection.

We sorted the data according to three anthro-
pogenic disturbance levels: High (Severn Sound 
wetlands), Moderate (Pointe au Baril and Franklin 
Island wetlands), and Low (Tadenac Bay Wetlands). 
We then determined if there were significant differ-
ences in percent DTZ among the three anthropogenic 
levels. Since the data were not normally distributed, 
we performed Kruskal–Wallis H test followed by 

Table 2   Total number of training and validation points used in 
image classification and validation

Site Period Training data Validation data

Tadenac Bay Period 1 90 41
Period 2 120 51

Franklin Island Period 1 57 28
Period 2 88 45

Pointe au Baril Period 1 312 120
Period 2 152 65

Severn Sound Period 1 226 97
Period 2 441 181
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the Mann–Whitney U test with IBM SPSS Statistics 
28.0.1.0. We also used the same non-parametric tests 
to compare significant differences in percentage areas 
of land-cover classes that had changed between low 
and high water levels, and significant differences in 
percentage areas that had changed to the DTZ for all 
land cover classes. We extracted the mean VI scores 
for each wetland in this study using the data calcu-
lated in Weller and Chow-Fraser (2019b) for EGB. 
We then correlated percentage areal cover of the DTZ 
against VI scores. VI scores range from 0 to 1, with 
1 indicating that wetlands are highly vulnerable to 
sustained water levels due to relatively low substrate 
slope (see Weller and Chow-Fraser 2019b for com-
plete explanation).

Results

We obtained over 85% overall accuracy for all sites 
for the two time periods with the object-based clas-
sification using the Random Forest classifier. We also 
obtained over 70% users’ and producers’ accuracies 
for the DTZ in Period 2 (Table 3).

Overall, we observed the greatest shift in shore-
line for wetlands located in the Franklin Island 
region and the least for wetlands in the Tadenac Bay 
region, although on a per unit area basis, the largest 
DTZ was observed in the Severn Sound region, and 
the smallest in the Tadenac Bay region (Fig. 2). The 
areal cover of DTZ differed significantly among the 
regions when they were sorted by disturbance levels 

(Kruskal–Wallis H test; P < 0.05); in pairwise com-
parisons (Mann–Whitney U test), areal extent of DTZ 
in the Tadenac region (lowest disturbance level) was 
significantly lower than that in the Pointe au Baril and 
Franklin Island regions (moderate disturbance level; 
P = 0.014) and lower than that in the Severn Sound 
region (highest disturbance; P = 0.048). We did not 
find any significant differences in areal cover of DTZ 
between the sites experiencing moderate and highest 
disturbance.

We found a general reduction in the EMS class 
from Period 1 to Period 2, and these were all statisti-
cally significant for Tadenac Bay (P=0.043), Frank-
lin Island (P=0.049) and Severn Sound (P=0.049); 
since there were only 2 sites in Pointe au Baril, no 
statistical comparisons could be made, but the aver-
age percentage area of EMS during the low water-
level period was triple that during the high water-
level period (Fig.  3). The percentage area of RBL 
also declined over the study period, with a signifi-
cant decrease in the Tadenac Bay region (P=0.034). 
By contrast, open water generally increased during 
Period 2, although these differences were not statisti-
cally significant (Fig. 3). There was inconsistency in 
the response of the SAV, with a significant increase 
in the Franklin Island region (P=0.05), which was 
mirrored by an increase in Pointe au Baril region; 
however, there was an overall reduction in percent-
age area of SAV in Period 2 for wetlands in the other 
two regions, although they were not statistically sig-
nificant. We found DT in all regions during Period 2, 
with mean percentage area of the DTZ ranging from 
a low of 1.24% in Tadenac Bay to high of 6.67% in 
Severn Sound (Fig. 3). Appearance of the DTZ was 
accompanied by a reduction in mean percent areal 
cover of EMS from Period 1 to Period 2 (Fig.  3). 
For three regions (Tadenac, Pointe au Baril and Sev-
ern Sound), mean percentage areal cover of FV also 
decreased from Period 1 to Period 2, but none of 
these changes were statistically significant.

There were no clear effects of anthropogenic dis-
turbance on land-cover changes between Periods; 
however, conversion of EMS to DT was highest in all 
regions except for Tadenac, and mean conversion per-
centage increased from the region with lowest to the 
region with highest disturbance level (Fig.  4). Simi-
larly, the conversion rate of T to DT increased along 
the disturbance gradient, while the conversion from 
SAV-DT was significantly lowest for the Tadenac 

Table 3   Accuracies for overall classification and for the DTZ. 
There was no DT in Period 1

Site Period Overall 
Accuracy 
(%)

Accuracy of DTZ clas-
sification

Users’ Accu-
racy

Produc-
ers’ 
Accuracy

Tadenac Bay Period 1 92.0 – –
Period 2 89.4 100.00 75.23

Franklin 
Island

Period 1 92.6 – –
Period 2 92.9 74.84 80.73

Pointe au 
Baril

Period 1 95.8 – –
Period 2 92.0 88.88 74.37

Severn 
Sound

Period 1 98.6 – –
Period 2 97.3 96.69 91.53
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Bay region. Although the conversion rate for the 
other land-cover classes to DT was not significantly 
related to the disturbance levels, when we regressed 
the percent areal cover of DT against corresponding 
VI scores for each wetland, we found a significant 
positive relationship (R2 = 0.569, P value = 0.0004; 
Fig. 5). Overall, DT and VI were lowest in Tadenac 
Bay, while those associated with Severn Sound were 
highest, and those associated with Pointe au Bail and 
Franklin Island were intermediate.

Discussion

Due to recent technological advancements, use of 
remote sensing-based classification and change-detec-
tion techniques have become popular in landscape 

ecology. Availability of high-resolution images has 
reduced the amount of field sampling required com-
pared to traditional site-level methods, making it 
possible to examine changes in vegetation over large 
spatial scales and over long time periods. We have 
adopted such an approach to examine long-term 
changes in wetland vegetation in coastal marshes of 
EGB. The mapping accuracy of such an approach is 
highly dependent on the spatial resolution of the satel-
lite images used, especially when complex land-cover 
classes (with fine features) are considered. Pansharp-
ening (or panchromatic sharpening) methods can be 
used to increase image resolution of satellite imagery. 
In the current study, we used Nearest Neighbour Dif-
fused pansharpening to increase detection of the DTZ 
along the shoreline of EGB. This technique fuses pix-
els of low-resolution multispectral bands with those 

Fig. 2   Comparison of land cover classes in wetlands between 
Periods 1 (low water levels) and 2 (high water levels). From 
left to right are Black rock (Tadenac Bay), Hole in the Wall 

(Pointe au Baril), Corbman Bay (Franklin Island), and Roberts 
Island (Severn Sound) wetlands
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of high-resolution panchromatic bands, while simul-
taneously preserving the spectral information (Amro 
et al. 2011). Despite the slight spectral distortion that 
may result (Amro et al. 2011), this technique has been 
used in visual interpretations (e.g. Google Earth) and 
as a preliminary step for higher-level processing such 
as mapping crops, landcover monitoring, anomaly 
detection (Du et al. 2013; Gilbertson et al. 2017; Qu 
et al. 2017; Vivone et al. 2021) and for wetland map-
ping in other parts of the world (Lin et al. 2015; Gao 
et al. 2016; Kaplan and Avdan 2018).

Following pansharpening, we tested several pixel-
based and object-based classification techniques and 

object-based random forests classifier gave us an 
overall accuracy of 85% for all sites (i.e. users’ and 
producers’ accuracies), and relatively high accura-
cies for individual land-cover classes, especially for 
the DT class. We were thus able to quantify changes 
in wetland vegetation in contrastingly low and high 
water levels spanning a period of almost two decades. 
Similarly, Ibarrola-Ulzurrun et  al. (2017) tested the 
use of pansharpened methods for mapping vegetation 
and tested several pixel-based and object-based image 
classification approaches. They reported higher map-
ping accuracy levels with the Bayes classifier applied 
following an object-based classification approach.

Fig. 3   Changes of all 
landcover classes from 
Period 1 to Period 2 (Error 
bars are 1SE. * indicate a 
significant change of % area 
cover between Low and 
High water levels for the 
corresponding land cover 
classes)
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Use of images collected from a single sensor 
would have increased our mapping accuracy and 
offered us an opportunity to test index-based change-
detection techniques; however, obtaining high resolu-
tion, cloud-free images from one sensor over the 17-y 
period of the study was not possible. Use of images 

acquired from the same kind of sensors was exten-
sively explored with satisfactory results in previous 
studies (Wan et al. 2018; Chastain et al. 2019; Wood-
cock et  al. 2020). Images with similar spectral and 
spatial resolutions provided capability to track the 
full range of landscape patterns while finer resolution 

Fig. 4   Percentage change 
of land cover classes in 
Period 1 that were con-
verted to DT in Period 2 
(Error bars are 1SE. Bars 
with the same letters (A, B, 
C) in each panel indicate 
that mean percent areas are 
not significantly different 
within the site)



	 Landsc Ecol           (2024) 39:44 

1 3

   44   Page 10 of 15

Vol:. (1234567890)

images reduced the errors associated with spatial het-
erogeneity, longer time gaps, and finer-scale changes 
(Gao et  al. 2015). Furthermore, the use of classifi-
cation-based change-detection methods can provide 
accurate change information that is not affected by 
external factors such as atmospheric interferences 
(Asokan and Anitha 2019). Classification-based 
change detection is directly affected by the classifica-
tion accuracy levels, but since we used a large amount 
of ground reference data for both classification and 
validation, we were able to minimize this error (Aso-
kan and Anitha 2019). When class level classifica-
tion accuracies are considered, we encountered some 
unavoidable misclassifications among trees and EMS 
classes because of their similar vegetation signals; 
there were similar confusion between RBL and FV 
classes due to their high reflectance values. These 
misclassifications, however, only occurred occasion-
ally and therefore they did not have a considerable 
level of affect on the conclusions.

The extent and structure of coastal wetlands at 
EGB are primarily controlled by water levels of Lake 
Huron. Extreme water-level changes mediated by 
climate change significantly affected the vegetation 
communities as well as wildlife habitats. Midwood 
and Chow-Fraser (2012) concluded that the sus-
tained water levels between 1999 and 2009 created 
more homogeneous wetland habitats in Tadenac Bay 
and Severn Sound that resulted in a net loss of suit-
able fish habitat in these regions. They also reported 

a significant decline in species richness following 
6  years of sustained low water levels and homoge-
neous fish communities between 2003 and 2009 for 
84 wetland complexes. Based on these observations, 
Leblanc et al. (2014) hypothesized that sustained low 
water levels reduced the suitability of nursery habi-
tat for age-0 muskellunge in coastal marshes of Sev-
ern Sound, and predicted that a return to high water 
levels would restore suitability of the nursery habitat. 
Results in this study, however, show that even after 
7  years of increasing lake levels in Lakes Michigan 
and Huron, the habitat structure in coastal wetlands 
had not been restored, primarily because the zone 
of dead trees and shrubs that established during the 
14 years of extreme low water levels are still stand-
ing in 1-2  m of water in 2021 and have prevented 
the proper re-establishment of the aquatic vegetation 
community (i.e. Emergent, Submergent and Floating 
vegetation).

Keddy and Campbell’s (2020) Twin Limit Marsh 
Model predicted how vegetation in north temper-
ate coastal marshes would respond to different water 
levels. Their model assumes that marsh will colo-
nize newly-exposed sediments within a year, and that 
within 4 years of flooding, the inundation would kill 
marsh plants and create open water or aquatic vegeta-
tion. They also assumed that most temperate woody 
plants are killed by just one year of continuous flood-
ing, but that a few can survive 2 to 3  years (their 
Table 1). Even though their model was able to explain 

Fig. 5   Linear regression 
of % area cover of dead 
trees with Vulnerability 
Index (VI) scores of wet-
lands in the four regions
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the vegetation zonation in Lakes Erie and Ontario, it 
is not applicable to coastal marshes of EGB, where 
inundation of the wet meadow zone (EMS) for 7 suc-
cessive years has not resulted in dead trees and shrubs 
falling down nor re-establishment of the SAV. Our 
results are also different from the small but immedi-
ate expansion of SAV into the wet meadow noted by 
Smith et al. (2021) for Lake Ontario coastal marshes 
that experienced 2  years of extremely high water 
levels (2017 and 2019) following a relatively sta-
ble period of water-level fluctuations between 2009 
and 2016. The unique pattern of water-level fluctua-
tions in EGB (Lake Huron) over the past 2 decades, 
together with the unique wetland geomorphology 
have led to a novel response by the vegetation com-
munity that cannot be explained by considering 
hydrographical data collected in the past century, or 
by observations obtained from other Great Lakes.

Despite obvious differences in development of 
the DTZ, we also observed similarities in how the 
meadow zone generally shrinks in response to high 
water levels due to the intolerance of meadow marsh 
species to prolonged flooding (Keddy and Reznicek 
1986). The negative relationship between areal cover 
of emergent and meadow vegetation and water lev-
els has been well established for Lake Ontario wet-
lands (Wilcox et  al. 2005; Chow-Fraser 2005; Wei 
and Chow-Fraser 2008). Although we expected this 
to be upheld for coastal marshes of EGB, there were 
regional differences (i.e. lowest percentage EMS in 
the Tadenac Bay region and highest in the Severn 
Sound region), and further research should be con-
ducted to determine if these differences are related to 
substrate slope and/or human activities.

There is currently no published literature on how 
the newly-created zone with dead trees and shrubs is 
used by fish and wildlife, although we are doubtful 
they provide the same ecosystem services as the zone 
of aquatic vegetation that existed prior to the period 
of anomalous water-level changes. This “novel” habi-
tat has not been reported in Georgian Bay or else-
where along the Laurentian Great Lakes coastline. 
Similar phenomena, however, had been observed in 
marine, brackish water, and near-sea freshwater wet-
lands due to climate-mediated sea level rise (Grieger 
et  al. 2020). In the estuarine coastal wetlands, trees 
have been replaced by marsh vegetation due to 
increased water levels, leaving a zone of dead terres-
trial trees and shrubs, which are referred to as ‘ghost 

forests’ (Kirwan and Gedan 2019). Such ghost for-
ests are studied in different regions of North America 
including the Florida Gulf coast, Albemarle Pamlico 
Peninsula of North Carolina, tidal freshwater forests 
in South Carolina, Georgia, and Louisiana, and many 
other regions of the USA and the St. Lawrence estu-
ary in Canada (Robichaud and Bégin 1997; Conner 
et  al. 2007; Raabe and Stumpf 2016; Kirwan and 
Gedan 2019; Martinez and Ardón 2021). Kirwan and 
Gedan (2019) found no such studies conducted out-
side of North America; they suggested that such land 
conversions may affect both the composition and the 
function of wetlands because invasive species such as 
Phragmites australis and Schinus terebinthifolius can 
colonize these new habitats and reduce the amount of 
potential wildlife habitat including those for at-risk 
species (Smith 2013; Langston et al. 2017). There is a 
great need to continue monitoring these new habitats 
of EGB, both with respect to vegetation composition 
and usage by wildlife, since at-risk turtle species are 
known to use coastal marshes in EGB (DeCatanzaro 
and Chow-Fraser 2010; Markle and Chow-Fraser 
2014).

Even though water-level changes had been the 
same across the EGB, we observed that sites with 
higher anthropogenic disturbance experienced 
greater habitat conversion. Coincidentally, the sig-
nificant positive relationship between percentage 
area of the DTZ and VI confirms Weller and Chow-
Fraser’s (2019b) observation that wetlands in the 
Severn Sound region where wetlands are shallower 
with gentle slopes, had higher vulnerability to sus-
tained low water levels than those in the Tadenac 
Bay region, where wetlands are deeper with steeper 
slopes. In addition to the gentle slopes, Severn Sound 
also experiences the greatest human impact related to 
recreational and cottage development and the highest 
amount of boat traffic, due to its closer proximity to 
populated urban centers of southern Ontario. There-
fore, this area is associated with a high level of build-
ings, roads, and marina development. These anthro-
pogenic impacts (increased densities of roads, docks, 
and buildings along the shoreline) may exacerbate the 
impact of higher vulnerability to water-level extremes 
and prevent wetlands from recovering from distur-
bances. In contrast, Tadenac Bay, the least human 
disturbed site appeared to have been more resilient 
to water-level disturbances and exhibited the least 
amount of vegetation change between time periods.
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Following 14  years of extreme low water levels, 
at least some emergent, meadow, and shrub classes 
had been converted into dead trees in all four regions 
during Period 2. In addition, we observed a reduction 
in areal cover of floating vegetation and a decrease 
in SAV in the Severn Sound and Tadenac bay sites. 
Floating vegetation, emergent, and SAV provide the 
most important fish habitats and therefore, reduction 
of these classes should have an adverse effect on wet-
land fish communities (Midwood and Chow-Fraser 
2010). It would have been ideal to map emergent 
vegetation as a separate class. Unfortunately, dense 
emergent vegetation had higher confusion with the 
meadow and shrub vegetation while sparse emer-
gent vegetation had higher confusion with the open 
water. Therefore, we had to combine emergent veg-
etation with the meadow and shrubs class. However, 
we were able to map SAV as an individual class, and 
thus delineate a large portion of fish habitats to a sat-
isfactory level. Loss of SAV habitat in Severn Sound 
was due to conversion of SAV to DTZ, not because 
the wetland was no longer suitable for SAV (gradual 
slopes provide more suitable conditions for SAV 
than do steeper slopes; Duarte and Kalff 1986), but 
because the trees and shrubs did not relinquish their 
foothold, some having been established in the wetland 
for 15 + years. Further studies should be conducted to 
examine the impact of this habitat loss on the wetland 
fish communities in Severn Sound.

Conclusions

Our study explored the changes in wetland vegeta-
tion as a response to extreme water level fluctuations 
in EGB. We successfully mapped wetlands in four 
selected regions during periods of extremely low 
and extremely high water levels using object-based 
image classification of multispectral images col-
lected by multiple sensors. We calculated the amount 
of six land-cover classes in wetlands that were con-
verted into DT from Period 1 to Period 2. Our results 
suggest that among the four regions, Severn Sound, 
the site with the highest VI score to water-level dis-
turbances and that experienced the highest amount 
of anthropogenic disturbance, exhibited the greatest 
conversion to DT. The lowest areal cover of DT was 
associated with Tadenac Bay, the site with the low-
est VI score and least anthropogenic disturbance, 

suggesting that these wetlands were more resilient to 
water-level changes. Two other regions with moder-
ate levels VI and moderate anthropogenic disturbance 
level, Franklin Island and Pointe au Baril, had inter-
mediate levels of DT cover. We observed a significant 
positive relationship between percentage DTZ and VI 
scores, and since VI reflects hydrogeomorphic char-
acteristics primarily related to substrate slope, we 
suggest that regions with lower slopes are more sus-
ceptible to changes caused by extreme and prolonged 
water level fluctuations. The higher VI scores were 
also associated with higher anthropogenic impact pre-
sumably because these areas are more desirable for 
recreational development. It was not possible for us 
to explore how the creation of DTZ affected the ecol-
ogy of the transformed wetland in this study; how-
ever, the DTZ was created at the expense of emer-
gent, meadow and shrub vegetation, and should affect 
habitat use by aquatic species such as wetland fish, 
birds, amphibians, and reptiles. Future studies should 
focus on understanding the interaction between water 
levels and changes in zonation on the ecology of fish 
and wildlife that depend on these important coastal 
systems.

Our study is the first to explore changes in wetland 
habitats due to sustained low water levels followed 
by extremely high water levels in EGB. We provide 
important insights into how high-quality wetlands in 
this region may respond to further water-level fluc-
tuations in the future and how they may respond to 
climate change. Since published literature predict-
ing how marsh vegetation should respond to flooding 
and de-watering have assumptions that should not be 
applied to our wetlands, we caution against using data 
from other Great Lakes to forecast impacts of climate 
change on the vegetation community of Georgian Bay 
coastal marshes. We therefore recommend that our 
approach be used to map and conduct change-detec-
tion for the remaining regions of the entire Geor-
gian Bay coast so that the impact of climate-induced 
water-level anomalies on ecosystem functions of 
coastal marshes can be documented. The maps we 
have produced in this project should be used to iden-
tify a gradient of change with which further research 
can be conducted to determine how fish and wildlife 
are using the novel dead-tree habitat.
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