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Abstract Coastal wetlands of eastern and northern

Georgian Bay, Canada provide critical habitat for a
variety of biota yet few have been delineated and

mapped because of their widespread distribution and

remoteness. This is an impediment to conservation
efforts aimed at identifying significant habitat in the

Laurentian Great Lakes. We propose to address this
deficiency by developing an approach that relies on

use of high-resolution remote sensing imagery to map

wetland habitat. In this study, we use IKONOS
satellite imagery to classify coastal high marsh veg-

etation (seasonally inundated) and assess the transfer-

ability of object-based rule sets among different
regions in eastern Georgian Bay. We classified 24

wetlands in three separate satellite scenes and devel-

oped an object-based approach to map four habitat
classes: emergent, meadow/shrub, senescent vegeta-

tion and rock. Independent rule sets were created for

each scene and applied to the other images to
empirically examine transferability at broad spatial

scales. For a given habitat feature, the internally

derived rule sets based on field data collected from the
same scene provided significantly greater accuracy

than those derived from a different scene (80.0 and

74.3%, respectively). Although we present a signifi-
cant effect of ruleset origin on accuracy, the difference

in accuracy is minimal at 5.7%. We argue that this

should not detract from its transferability on a regional
scale. We conclude that locally derived and object-

based rule sets developed from IKONOS imagery can

successfully classify complex vegetation classes and
be applied to different regions without much loss of

accuracy. This indicates that large–scale mapping
automation may be feasible with images with similar

spectral, spatial, contextual, and textural properties.
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Introduction

Habitat identification is an important goal for wetland

managers, researchers, and policy makers in the
creation of sound conservation and management

practices. Landscape level mapping using remote
sensing has long been a source of identifying and

quantifying specific habitats such as wetlands.

Remote sensing of wetlands for habitat identification
has been extensively studied using a variety of

sensors and mapping techniques (Ozesmi and Bauer

2002); however, the recent emergence of object-
based approaches to image analysis has now allowed

for the development of multiple-image classifications
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and the potential for automation of habitat mapping.
Here we evaluate the use of an object-based approach

to map coastal high marsh habitat in eastern Georgian

Bay, Ontario, Canada and determine the success of
this technique in mapping at regional scales.

Although many have mapped wetlands using an

object-based approach, none have tested the transfer-
ability of individually derived object-based rule sets

in mapping across regions.

Wetlands are inherently difficult to map because
they are ecotones whose boundaries exist along a

wetland/upland continuum, and are subject to regular

changes in inundation (Ozesmi and Bauer 2002) that
result in complex assemblages of vegetation and

habitat types (Gluck et al. 1996). Remote sensing

with satellite imagery is currently the only feasible
tool for large-scale, landscape-level mapping and

classification of wetland habitats. In the past, coarse

spatial resolution (10–30 m) sensors, such as those
carried by Landsat (Baker et al. 2006; Grenier et al.

2007; Poulin et al. 2002) and SPOT (Grenier et al.

2008; Jensen et al. 1993; Töyrä et al. 2001) were only
capable of discriminating among wetland types

(marsh, swamp, fen, and bog). The advent of sensors

with high spatial resolution (less than 1 m) carried by
satellites such as IKONOS (1-m resolution) (Dechka

et al. 2002; Dillabaugh and King 2008; Fuller et al.

2006; Lawrence et al. 2006; Midwood and Chow-
Fraser 2010; Wei and Chow-Fraser 2007) and

QuickBird (0.60-m resolution) (Ghioca-Robrecht

et al. 2008; Wolter et al. 2005) has made mapping
within-wetland vegetation possible.

Two classification approaches have been used in the

past to map wetlands. In the pixel-based approach,
each pixel is assigned a class based on pre-determined

rules and algorithms. This can lead to gross misclassi-

fication because it does not account for orientation and
context of the pixels in relation to neighbouring pixels.

For example, a pixel exhibiting spectral properties

consistent with ‘‘meadow’’ would be misclassified as
meadow even if it actually occurs in the midst of

floating vegetation. By comparison, in an object-based
approach, pixels are first grouped, and the resulting

objects have spatial, contextual, and relational char-

acteristics that can be manipulated and incorporated
into algorithms and rule sets that can create more

meaningful and accurate classifications. Hence, mis-

classifications are reduced when the ‘‘floating’’ pixels
with abnormal spectral values are grouped correctly

with neighbouring ‘‘floating’’ pixels because of its
spatial context; in other words, mean spectral value of

neighbouring pixels can effectively dampen the influ-

ence of outliers (Flanders et al. 2003; Navulur 2006).
This explains why the object-based classification

approach has become the more popular alternative in

recent years (Chubey et al. 2006; Laliberte et al. 2004;
Wulder et al. 2004; Zhou et al. 2008) and has been used

to map wetlands such as tropical mangrove swamps

(Wang et al. 2004) and boreal peatlands (Grenier et al.
2007; Grenier et al. 2008). Within a Canadian context

evaluating this approach is essential due to object-

based mapping being identified as a key component in
the development of an inventory of Canada’s wetlands

(Fournier et al. 2007).

Although past studies have applied classification
techniques to multiple scenes (Grenier et al. 2007;

Wei and Chow-Fraser 2007; Yu et al. 2006), the

majority have used pixel-based approaches that
require scene-specific training (Lillesand and Kiefer

2004; Navulur 2006). In this study, we empirically

examine the transferability of rule sets derived from
one scene using an object-based approach, to map

vegetation in other scenes that were not used in

development of the rule set. Sawaya et al. (2003)
have cautioned against applying rule sets to multiple

scenes unless they have been acquired during the

same satellite pass because time, angle, and atmo-
spheric conditions at acquisition can create consider-

able inter-scene variation. The feasibility of

transferring rule sets derived from a single scene to
multiple scenes without the need for additional field

data is something worth investigating, especially for

mapping habitats at the regional scale such as eastern
Georgian Bay.

The rationale behind the focus of this study are

that Great Lakes coastal wetlands are highly diverse
systems that not only provide critical habitat for a

variety of biota but also provide ecological services

that benefit humans (Maynard and Wilcox 1997;
Mitsch and Gosslink 2000). In our specific context,

the historic loss of 80% of southern Ontario’s coastal
wetlands post European settlement (Snell 1987) has

justified a comprehensive inventory and field verifi-

cation of remaining coastal wetlands along the
shoreline of Lakes Ontario and Erie in Canada

(Ingram et al. 2004; Fig. 1). Despite the large number

of coastal wetlands in eastern Georgian Bay (Ingram
et al. 2004), very little mapping effort and field
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sampling has been carried out along its shoreline.
This is largely attributed to the predominance of

Precambrian Shield shoals and the lack of permanent

human settlements that make field sampling in this
area difficult and costly. Additionally, unlike wet-

lands of the two lower Great Lakes (Lakes Ontario

and Erie), few of the Georgian Bay wetlands have
been mapped for their habitat types (i.e. aquatic,

emergent, meadow, etc.), and this is an impediment

to efforts aimed at conserving critical fish and
wildlife habitat in coastal wetlands due to the

inability to identify significant habitat.

This study expands on the work of Wei and Chow-
Fraser (2007) and was conducted concurrently with

Midwood and Chow-Fraser (2010). Wei and Chow-

Fraser (2007) successfully classified aquatic coastal
wetland vegetation at 11 sites in Lake Huron and

Georgian Bay using IKONOS satellite imagery with

pixel-based approach. Midwood and Chow-Fraser
(2010) expanded upon the work of Wei and Chow-

Fraser (2007) for similar habitat classes using an

object-based approach. Focusing on the regional
identification of fish habitat, they applied an object-

based rule set to multiple images. Here, we focus on

the terrestrial component of coastal marshes to map

high marsh habitat, that which is seasonally inun-
dated from the water’s edge or shoreline (boundary

with low marsh or permanently inundated habitat) to

the upland forest boundary. We investigate the
feasibility of using IKONOS imagery and an

object-based classification approach to classify

coastal high marsh vegetation in three satellite scenes
into four classes (meadow/shrub, emergent, senescent

vegetation, and rock). Our second objective is to test

the scene-to-scene transferability of rule sets devel-
oped for images taken during the same satellite pass,

to assess the validity and efficacy of developing one

ruleset to map a large collection of single-pass scenes
for the entire southeastern shoreline of Georgian Bay.

Study area

Georgian bay

All of the coastal wetlands mapped are situated along

the eastern shoreline of Georgian Bay, Ontario,
Canada (Fig. 1) within the UNESCO Georgian Bay

Bioshpere Reserve. Georgian Bay is the large eastern

bay of Lake Huron, separated by the Bruce Peninsula

Fig. 1 Subsets of IKONOS
scenes highlighting
wetlands sampled in eastern
Georgian Bay, Lake Huron.
The three regions mapped
are: Woods Bay (inset 1),
Tadenac Bay (inset 2), and
North Bay (inset 3).
Accompanying regional
high marsh habitat
information can be found in
Table 2 for the entire
scenes. Red areas in the
imagery insets represent
high marsh habitat
identified by the McMaster
Coastal Wetland Inventory
(MCWI; Chow-Fraser
unpub data)
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and Manitoulin island. It is the worlds largest
freshwater archipelago with 30,000? islands on its

eastern shore. It has a maximum width of 95 km and

a maximum length of 215 km along the NW–SE axis
with a surface area of 15,111 km2 (Sly and Munawar

1988). Eastern Georgian Bay is an insular dominant

landscape where exposed Precambrian Shield is
common and vegetation exists on thin soils. Tremen-

dous coastal wetland development has occurred along

the lee of islands and in protected embayments along
a highly complex and convoluted shoreline (Maynard

and Wilcox 1997). Coastal wetlands in this region are

heavily influenced by fluctuating water levels of the
Lake Michigan-Huron system that act as a natural

disturbance on wetland vegetation (Keddy and

Reznicek 1986) maintaining high diversity of mac-
rophytes relative to the Great Lakes (Chow-Fraser

2006; Croft and Chow-Fraster 2007).

Description of regional differences

The 24 wetlands that were classified in this study
are located in three regions named for the major bay

focused on: Woods Bay, Tadenac Bay, and North

Bay (Fig. 1). The Woods Bay scene is the most
northerly, smallest in area, and ranks second in

terms of high marsh habitat among the three scenes.

Within the scene, six wetlands were classified
covering 38 ha of a possible 147 ha. The Woods

Bay region also includes Port Rawson Bay to the

north, Blackstone Bay to the northwest, and Moon
River Bay to the south (Fig. 1). The Tadenac Bay

scene is located south of Woods Bay, ranks second

in area, and has the least high marsh habitat. Within
this scene, 10 wetlands were classified covering

38 ha of a possible 77. The Tadenac Bay region also

includes Twelve-Mile Bay to the north and Tadenac
Lake to the east (no surface hydrological connection

to Georgian Bay) (Fig. 1). The coastal marshes of

Tadenac Bay have some the least impacted water
quality in the Great Lakes and have been used as

reference sites in past studies (Chow-Fraser 2006;
Croft and Chow-Fraster 2007; Croft and Chow-

Fraser 2009; Decatanzaro et al. 2009). The North

Bay scene covers the largest area and has a total
high marsh habitat of 242 ha, and of this, 37 ha

belonging to eight wetlands were classified (Fig. 1,

Table 1). The North Bay region also includes the
major recreational port of Honey Harbour, South

Bay to the South, Beausoleil Bay to the west, and
Musquash Channel to the north.

Methods

Coastal marshes are operationally defined in this study
as wetlands that are hydrologically connected to

Georgian Bay via surface water within 2 km of the

shoreline (Ontario Wetland Evaluation System
[OWES]; OMNR 1993). All coastal marshes in this

study occur at the lake/land interface and none are

considered inland. IKONOS imagery (Geoeye, Dulles,
VA, USA) was acquired during the same satellite pass

on July 1st, 2002 for all three scenes used in this study.

All images are cloud-free, multispectral (Red, Green,
Blue, and Near Infrared bands), and were pan-sharp-

ened and radiometrically corrected by the image

provider with a resolution of 1 m. All imagery was
acquired just prior to maximal vegetative growth in

midsummer to capture the full extent of the wetlands.

The IKONOS imagery was imported into a GIS
and all coastal wetlands within each scene were

manually delineated as part of the McMaster Coastal

Wetland Inventory (MCWI; Chow-Fraser unpub
data) using ArcGIS 9.2 (ESRITM, Redlands, CA,

USA). Binary masks were created in ENVITM (ITT

Visual Informations Solutions, White Plains, New
York, United States; v4.1) to isolate the wet meadow

habitat for classification from the entire image. Masks

excluded upland islands within wetlands but did
include solitary rocks.

Wetland vegetation classes

Classes that were mapped correspond to major

vegetation habitat types found in Georgian Bay
coastal wetlands: meadow/shrub (high marsh), senes-

cent vegetation (low or high marsh), emergent (low

marsh) and rock (no equivalent OWES class)
(Table 2, Fig. 2). We have indicated in parentheses

the corresponding wetland types (marsh [high and
low]) to be consistent with the classification proce-

dures of the Ontario Wetland Evaluation System

(OWES; OMNR 1993), which evaluates wetlands on
biological, social, hydrological, and unique habitat

features at the provincial level. Unfortunately, it was

not possible to accurately separate meadow from
shrub classes, and therefore meadow and shrub
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classes were merged into meadow/shrub (Fig. 2). We

have included the emergent vegetation class to reflect
the transition from aquatic (low) to terrestrial (high)

marsh habitat (Wei and Chow-Fraser 2007), and the

latter class, rock, was included due to the predom-
inance of exposed Precambrian Shield that defines

this landscape.

Classification procedure

The classification approach includes creating a deci-
sion tree (Lillesand and Kiefer 2004) composed of

rules at each decision or node (Fig. 3a; Midwood and

Chow-Fraser 2010). The process tree is a decision
tree created in Definiens Developer 7TM (Definiens

Imaging GmbH, München, Germany) with image

objects. It is non-stepwise but hierarchical in that
rules lower on the tree can still affect the classifica-

tion of classes above. This is the concept of

optimization, where subsequent rules are used to
optimize or correct misclassification from an initial

rule. For example, shrub and floating vegetation have

similar spectral values, and to minimize misclassifi-
cation of shrub pixels, we can apply a rule that forces

all vegetation objects occupying an area\15 pixels

that are surrounded by shrub pixels to be classified as
‘‘shrubs’’, even if spectral properties are more

consistent with ‘‘floating’’. The logic is that floating

vegetation is not naturally found in small discrete
clumps within shrubs which has been verified from

field observations.

In this study, criteria used to create the ruleset
were spectral, spatial, relational, and contextual in

nature (Table 3; Definiens 2007). We used a multi-

resolution segmentation algorithm to create the
objects from the initial image of pixels. We found

that segmenting for a small object size (scale factor of

7) was most beneficial for identifying the desired
classes and that spectral properties rather than shape

were the most important for grouping the pixels. The

layout of the ruleset was dictated by how each class
could be separated and the best order was selected

from numerous trials. The classification strategy was

to first use spectral thresholds to separate a class
mainly using a band, band ratio (i.e. NIR/R), or a

vegetation index (i.e. Normalized Difference Vege-

tation Index—NDVI; Lillesand and Kiefer 2004).
This would produce the base classification with some

Table 1 Summary of the five classes sampled and mapped in this study including dominant vegetation and class descriptions

Class Description Dominant vegetation

Emergent Transitionary vegetation between low marsh
and high marsh zones

Sedge sp. (Carex sp.), Marsh Spike Rush (Eleocharis smallii), Bullrush sp.
(Schoenplectus sp.), Cattail sp. (Typha sp.)

Meadow Wet meadow vegetation including grasses,
sedges, and herbaceous vegetation

Sedge sp. (Carex sp.), Canada Blue Joint (Calamagrostis canadensis),
Manna Grass sp. (Glyceria sp.), Swamp Candles (Lysimachia terrestris),
Spotted Joe-Pye weed (Eupatorium maculatum), Canada Goldenrod
(Solidago canadensis)

Senescent Dry and/or dead vegetation Mixture of meadow and emergent species usually indistinguishable at the
species level

Shrub Robust woody vegetation Sweet gale (Myrica gale), Speckled Alder (Alnus incana), Slender-leaved
willow (Salix petiolaris)

Rock Rock and impervious surfaces Precambrian Shield, no vegetation

Table 2 Summary of regional high marsh habitat and scene information including high marsh habitat area, scene size, and number
and area of study sites

Scene Number of sites
visited

Total area of high marsh
habitat (ha)

Total area of sites
visited (ha)

Coastal 2 km buffer
area (ha)

Woods Bay 6 147 43 7564

Tadenac Bay 10 77 38 8897

North Bay 8 242 37 9448

Study site locations and high marsh distribution within each scene can be found in Fig. 1. Area is reported in hectares (ha)
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misclassification. Optimization would then be used to
correct for the misclassifications.

A mass exploratory pixel-data-mining exercise

was used to extract spectral values for over 10,000
pixels from all sites and scenes. Some of these pixels

were selected based on expert knowledge of the sites

(from field observations) and were different from
pixels used for classification validation; the majority,

however, were not based on field observations but

used this field data as a guide for their selection.
These pixels were then used to find base thresholds

and to determine significant differences between

spectral properties of different classes. A portion of
the field data were used in conjunction with base

thresholds from data mining to create each scene’s

rule set. To determine within-scene rule sets, we
chose sites in each scene that were sufficiently large

to generate data for both training and validation.

Fig. 2 Examples of the coastal high marsh vegetation and non-vegetation classes including: a Emergent, b Meadow, c Senescent
vegetation, d Shrub, e Rock and the eventual merged class of f Meadow/Shrub. See Table 1 for class descriptions
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These were Black Rock West for Tadenac Bay, North
Bay 4 East for North Bay, and Grapps Marsh for

Woods Bay (Table 4).

Initially, masks were used to isolate all wetlands
and then a multi-resolutional segmentation was used

to create objects within each wetland. Masks were

created by manual delineation of the high marsh
habitat boundary from the IKONOS imagery created

for the McMaster Coastal Wetland Inventory

([MCWI]; Chow-Fraser unpublished data). Rules
were then created with the ‘‘feature-space optimiza-

tion view’’ in Definiens, where value intervals can be

selected for a band or a feature, and the analyst is
given the opportunity to preview which objects would

be classified by the given rules. The final rule-set is

then applied to the entire scene or scene subset, and
accuracy is assessed on a site-by-site basis. Each

class was then exported as a shapefile to be analyzed

in a GIS. Area analyses were conducted using
ArcGIS 9.2 (ESRITM, Redlands, CA, USA).

Field data

Twenty-four wetlands were visited in the summers

of 2007 and 2008 and the locations of at least
4 m 9 4 m quadrats of homogenous vegetation

corresponding to our four classes were recorded

with a GPS. Although 5 years is considered the limit
in the time difference between image acquisition

and in-field data collection (Belluco et al. 2006), we

do not attribute large errors to the data collected in
2008. In addition, Lake Michigan-Huron water

levels when the imagery were acquired and field

Fig. 3 Graphical representations of the study layout. A
method to classify wet meadow habitat using objects from
multispectral IKONOS imagery was developed in the form of a
rule set (a). Rule sets were independently created for each of
three regions, with each region’s rule set represented as
differently shaded triangle (b). Each rule set was separately
applied to each IKONOS image (c). A rule set applied to its
region of origin we term internally derived and are represented
with dark lines and match the IKONOS image’s shade. A rule
set applied to a region that was not involved in its creation we
term externally derived

Table 3 Object-based classification features and algorithms used in the creation of high marsh rule sets (Definiens 2007)

Feature type Algorithm Feature description

Segmentation Multiresolution Creates objects from pixels that are grouped according to the level of importance of shape or
spectral properties and scale

Spectral HSI
Transformations

Separates Hue, Saturation, and Intensity of colour-space tranformations of RBG and combinations
of NBG bands

Spatial Area Identifies objects according to a pre-defined size maximum or minimum

Relational Border to Indentifies objects that are bordering the specified class(es) (from borders of 0–100%)

Existence of Indentifies objects in contact with the specified class(es)

Contextual Enclosed by class Identifies all objects completely surrounded by the specified class(es)

Custom features Rules that combine two or more of the above-mentioned algorithms
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data were collected (both July) do not vary consid-
erably from 2002 to 2008 although natural, seasonal

and annual variation was observed (DFO 2010). At

each location, the dominant species were recorded
and any pertinent features were noted. Since the

error of the GPS ranged from 2 to 6 m, we only

used validation pixels that occurred in a very large
homogeneous area indicated by the GPS coordi-

nates. The number of validation pixels per class

were proportionate to the class in question within
the wetland. In some instances, the error of the GPS

was too great to be used and the boundary of the

class was manually delineated on a printed copy of
the IKONOS image while the analyst was in the

field. We decided to use pixels for the validation

data rather than objects as to not assume that object
boundaries are completely accurate representations

of the class boundaries.

Table 4 Summary of the accuracies by wetland and by each of the three regional rule sets

Scene/region Wetland Accuracy of regional rule sets

TB NB WB

Tadenac Bay Black Rock North 88.4 80.9 64.7

Black Rock West! 80.0 80.4 77.3

Blasted Channel 80.0 78.3 68.6

Coffin Rock 83.6 78.7 71.9

East of Thunder 83.4 77.1 77.8

Miners Creek 84.7 89.8 90.4

Pamplemousse 83.2 80.9 69.3

Petite Pamplemousse 76.1 72.6 67.5

Thunder Bay 78.9 75.8 74.8

West of Black Rock 76.0 68.8 62.9

Mean 81.4a 78.3a 72.5b

North Bay North Bay 1 68.1 72.6 72.1

North Bay 2 71.5 73.1 72.4

North Bay 4 East! 75.7 90.5 90.1

North Bay 4 West 81.4 62.3 54.4

North Bay River North 60.7 72.4 71.9

North Bay River South 70.5 93.3 91.3

North Bay River 61.7 74.4 72.8

Treasure Bay North 80.1 81.4 77.0

Mean 71.2a 77.5b 75.3ab

Woods Bay Blackstone 1 71.2 78.2 78.3

Blackstone 2 64.1 71.9 74.7

Grapps Marsh! 58.9 73.8 78.6

Moon River 1 78.3 82.4 88.4

Port Rawson 67.6 74.8 75.1

Woods Bay 1 79.1 84.4 89.8

Mean 69.9a 77.6b 80.8b

Each wetland is grouped by scene (region) and has three values corresponding to the accuracy of each rule set. The Mean row refers
to the mean accuracy of all wetland in a given scene and the Overall Mean row refers to the accuracy for each rule set for all
wetlands. Different letters following values in the mean row (i.e. a and b) indicate they are significantly different (ANOVA, Tukey–
Kramer; P\ 0.05). Shared letters in (i.e. a and ab) following values indicate they are not significantly different (ANOVA, Tukey–
Kramer; P C 0.05)
! Indicates that portion of the wetland data was used in rule set creation
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Study layout

Initially, we determined whether an object-based
approach using IKONOS imagery can accurately

classify wet meadow vegetation. To do so we

developed a ruleset-based method for mapping
(Fig. 3a). To test transferability across regions we

independently created a single rule set for each

of three regions or scenes (WB, TB, NB; Fig. 3a
and b). We then applied each rule set to each

region’s IKONOS image to produce a separate
classification with an accompanying accuracy for

each rule set. This allowed us to determine if the

accuracy significantly differs depending on the rule
set applied and the region classified. We applied

rule sets created from its scene of origin (internally

derived rule sets) and rule sets created from
other scenes (externally derived rule sets) to deter-

mine if transferability among regions is possible

(Fig. 3c).

Fig. 4 Classification of
Black Rock Bay North in
the Tadenac Bay scene.
Unclassified image with
non-wet meadow habitat
masked out in translucent
black (a). Classified image
of Black Rock Bay using
the TB rule set (b, 88.4%
accuracy), NB rule set
(c, 80.9% accuracy), and
WB rule set (d, 64.7%
accuracy)
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Accuracy assessment

We used error matrices produced by Definiens
Developer 7TM to assess the transferability of the

rule sets to each site (Congalton 1991; Lillesand and

Kiefer 2004). More specifically, the end result was
three separate error matrices (each matrix represen-

tative of the regional rule set applied) for each

wetland visited. The error matrices summarized
errors of omission (producer’s accuracy) and com-

mission (user’s accuracy), and overall accuracy, per

class and for the wetland. Producer accuracy is the
proportion of correctly classified samples of a class.

In other words, it is the frequency of omitting the

correct class for a given habitat feature. User
accuracy is the proportion of correctly classified

samples of all samples in that class, or how often a

sample in a particular class actually belongs to that
class. Overall accuracy is computed as the proportion

of all correctly classified validation samples and

provides a means of presenting data in a manner
understandable by an end user (Congalton 1991;

Story and Congalton 1986). To maintain consistency

and provide valid comparisons, the same validation
data was used for each rule set at each site.

Statistics

Statistical analyses were performed with SAS JMP

v7.0 (SAS institute, Cary, NC, USA). We used
ANOVA or t-tests as appropriate to determine

significant differences among or between means,

respectively. Where significant differences were
determined by ANOVA, we used Tukey–Kramer to

conduct pairwise comparisons.

Results

Mass data mining and exploration

Vegetation classes across all three satellite scenes
were found to be broadly homogeneous with respect to

spectral properties from data mining and exploration.

Across all three scenes, we detected no significant
differences in mean spectral properties with respect to

a single vegetation class, including mean band spectral

values, mean band ratio spectral values, and mean
Normalized Difference Vegetation Index (NDVI)

values (ANOVA, P[ 0.05) based on about 10,000
pixels. The meadow and shrub classes; however, had

overlapping ranges in spectral signatures and would

have been frequently misclassified if we had not
combined these into one class in this study (Fig. 4).

This is the main reason for combining the two into one

class of meadow/shrub, even though they each support
distinctive bird and wildlife habitats (Maynard and

Wilcox 1997). This class is still useful for identifying

habitat because wet meadow is already considered a
broader habitat type.We are therefore identifying very

narrow habitat ranges that can be merged without

major consequence.

Rule set accuracies across scenes

When data across all scenes were considered, there

were no significant differences among mean rule set

accuracies, with an overall mean accuracy of 76.1%,
with\4% difference between the highest (77.8%; NB

rule set) and lowest (74.2%; TB rule set) overall

accuracy (Table 4). The range of individual wetland
accuracies was from 54 to 93% (Table 4). As

expected, the accuracy associated with each scene

was generally dependent on the origin of the training
set (Table 4). There are two ways to examine this

trend, how accurate each rule set is with regard to one

scene/region and how accurate one rule set is with
regard to all scenes/regions. For example, with regard

to the Tadenac Bay scene, the mean accuracy of all

wetlands was 81.4% when the TB rule set was applied
compared with 78.3 and 72.5% for the NB rule set and

WB rule set, respectively. With regard to the TB rule

set’s performance across all three regions, it is highest
when applied to the Tadenac Bay scene at 81.4%;

however, when applied to wetlands in North Bay and

Woods Bay, the mean accuracies dropped accordingly
to 71.2 and 69.8%, respectively (Table 5). Although

significant differences among rule sets existed at the

scene level, no single rule set emerged as being
superior when applied to the other two scenes.

Producer and user accuracies

Both producer- and user-accuracies show that emer-
gent and meadow/shrub classes were classified with

the greatest accuracies, and the dry and impervious

classes of senescent and rock were classified with
lowest accuracies (Table 5). These latter classes

Wetlands Ecol Manage

123



were, however, consistently misclassified across rule

sets and scenes (Table 5). When all three scenes were

taken into consideration, the NB rule set had
significantly greater producer accuracy, but had the

lowest user accuracy with respect to emergent

vegetation (ANOVA, Table 5). By comparison, the
TB rule set had significantly greater producer accu-

racy and lower user accuracy with respect to

meadow/shrub vegetation (ANOVA, Table 5).

Rule set origin

There is a significant effect of rule set origin on mean

accuracy.Mean accuracy for internally derived rule sets
(i.e. rule set applied to the scene from which it was

created) have significantly greater accuracy than exter-

nally derived rule sets (80.0 vs. 74.3% respectively;
ArcSine transformed proportion wetland accuracy,

t-test, P\ 0.05). This amounts to a 5.7% difference in

mean accuracy depending on rule set origin.

Discussion

In this study, we used IKONOS imagery to classify

high marsh habitat in coastal wetlands of eastern

Georgian Bay into four classes (meadow/shrub,
emergent, senescent, and rock) with an overall

accuracy of 76.1%. The mapping accuracies overall

for each of the scenes were 74.2, 77.8, and 76.2% for
Tadenac Bay, North Bay, and Woods Bay respec-

tively. These values indicate that we attained map-

ping accuracy that we consider very successful in all
cases, because the focus of this study is on vegetation

within a very narrow zone, high marsh. We therefore

conclude that IKONOS imagery should be used to
map high marsh habitat in eastern Georgian Bay. It is

unlikely that we would ever achieve ‘‘excellent’’

mapping accuracy using only satellite imagery
([85%), since the composition of this zone in

marshes along the coast of eastern Georgian Bay

consist of similar vegetation types whose boundaries
are not clearly defined spectrally.

A second goal of this study was to evaluate the use

of an object-based approach to map wetlands at a
regional scale. In this study, we created rule sets that

employed both spectral and contextual information.

Class accuracies varied greatly depending on the
scene and rule set used. We see that the meadow/

shrub class was the most accurately classified,

followed by the emergent class. It was important
for these two classes to be classified accurately

because the separation of these classes is the bound-

ary between land and water and represent the
majority of the habitat of interest. The senescent

and rock classes were not classified as accurately

because they are spectrally similar and in many cases
formed somewhat mixed objects. These two classes

often occurred adjacent to each other, and were

difficult to separate even with expert visual image
interpretation. Since geographic coverage of the

senescent class is related to soil moisture, it is

worthwhile to investigate further how best to accu-
rately detect this habitat feature so that annual

changes in this class could be monitored effectively.

Dillabaugh and King (2008) also found it difficult
to separate meadow from shrub classes in similar

riparian systems using IKONOS imagery. Shrubs
exist at the periphery of wetland/upland boundaries

and are also scattered among the wet meadow and

emergent vegetation. We were partially successful
identifying peripheral shrubs, but had great difficulty

identifying the scattered shrubs. One contributing

factor to the difficulty in identifying peripheral shrubs
is that shadows were often confused with inundated

Table 5 Summary of individual class producer and user
accuracies with respect to each rule set across all scenes

Class Rule set

TB NB WB

Overall mean class producer accuracy

Emergent 75.8a 88.9b 81.7ab

Meadow/shrub 93.6a 85.3ab 82.2b

Senescent 52.0a 59.1a 48.8a

Rock 44.1a 42.8a 63.8b

Overall mean class user accuracy

Emergent 95.8a 82.6b 93.4a

Meadow/shrub 72.1a 83.7b 83.8b

Senescent 69.1a 70.2a 69.3a

Rock 54.5a 57.0a 47.6a

Producer accuracy is the proportion of correctly classified
samples of a class. User accuracy is the proportion of correctly
classified samples of all samples in that class. Different letters
in superscript following values (i.e. a and b) indicate they are
significantly different (ANOVA, Tukey–Kramer; P\ 0.05).
Shared letters in superscript (i.e. a and ab) following values
indicate they are not significantly different (ANOVA, Tukey–
Kramer; P C 0.05)
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vegetation, and Sawaya et al. (2003) have already
warned of potential problems with shadows being

artifacts of high-resolution imagery. Our inability to

separate meadow vegetation from shrubs limited the
usefulness of this approach to predict habitat quantity

for specific bird and wildlife assemblages. Since

shrub thickets and meadow vegetation provide habitat
for different species, a combined estimate of

meadow/shrub limits our ability to make specific

predictions at the species level. This we feel is not a
large impediment for the application of this approach

to habitat mapping, as we have been able to separate

tall shrubs from other vegetation types much more
successfully in upstream wetland habitats (Rokitn-

icki-Wojcik unpub data). The homogeneity of these

habitat classes and the inability to separate them are a
technological limitation at this point. We expect that

this limitation would be easily adverted with the

incorporation of ancillary data (i.e. elevation, slope
or, soil type layers; Yu et al. 2006) especially LiDAR

(Light Detection and Ranging) data, which can

identify canopy and vegetation height. LiDAR has
been shown to augment wetland mapping accuracy

using IKONOS imagery (Maxa and Bolstad 2009). A

potential future direction could be to use a hybrid
approach where pixel-based classification is used for

highly confused features and object-based classifica-

tion for others.
This is one of the first studies in the Great Lakes

basin to use an object-based approach to map

wetlands (see also Midwood and Chow-Fraser
2010) and has great implications for future mapping

projects focused on wetland habitat. Midwood and

Chow-Fraser (2010) applied an object-based rule set
to a large collection of similar images without testing

regional-specific rule set performance. Here we

provide evidence to support the transferability of
their rule set to images not included in rule set

development. Mapping projects using rule set trans-

ferability such as Midwood and Chow-Fraser (2010),
illustrate that quality large-scale habitat data can be

produced while minimizing expensive field surveying
which is highly sought after by wetland managers.

In this study, we were able to use IKONOS and the

object-based classification to map highly complex
and specific habitat types at very fine spatial scales in

small wetlands. To the authors knowledge this is the

first study to evaluate rule set transferability and will
lay the groundwork for large-scale mapping

initiatives without the need for expensive field
surveys. This has very positive implications for

wetland and habitat mapping of large natural shore-

lines like eastern Georgian Bay. Within 2-km of the
Georgian Bay shoreline, majority of the wetlands that

are upstream of high marsh habitat include many

swamps and fens (Rokitnicki-Wojcik unpub data). By
incorporating high resolution LIDAR data, to the

current approach used here, we will be able to

develop classification rule sets that can separate
vegetation based on height, and thereby distinguish

large shrubs/trees in swamps from the herbaceous

meadow/mosses of fens and bogs.
We assessed the transferability of three rule sets

derived independently to other scenes acquired

during the same satellite pass. We know that the
application of a model to a different scene usually

results in lower accuracy because of the potential

effect of spatial autocorrelation (Wei and Chow-
Fraser 2008). Mapping accuracy was significantly

higher for scenes based on internally derived rule sets

compared with externally derived rule sets, but these
differences were relatively small (Table 4), and from

a practical perspective, these differences should not

dissuade a manager from using externally derived
rule set to identify habitat, given the high cost of field

surveys. Since we found no significant differences in

spectral and index values among classes in the initial
data mining and exploration, we conclude that the

scenes are sufficiently similar in spectral properties

that transferability should be expected. In addition,
there were very similar accuracies associated with

externally derived rule sets presented in Table 3.

Although we expected higher accuracies for inter-
nally derived rule sets, there was slight variation at

the scale of the wetland depending on the rule set

used (Table 4) and not all wetlands showed higher
accuracy for internally derived rule sets. Mean

wetland accuracy values for each rule set do show

the general trend and are in agreement of the
assumption that accuracy is higher for internally

derived rule sets than externally derived rule sets. We
present this as a tool to be used in future transfer-

ability studies. Classification producers should first

select a broad range of exploratory pixels for each
mapping class and test for differences among scenes,

sites, or the unit of transferability. Practical and

ecologically meaningful differences should also be
determined prior to classification development to aid
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in concluding whether transferability is sufficient for
specific applications.
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